Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, Center for the Physics of Living Cells, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA, Department of Biochemistry, Carver College of Medicine, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA and Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
Nucleic Acids Res. 2013 Oct;41(19):9020-32. doi: 10.1093/nar/gkt691. Epub 2013 Aug 8.
RAD51 DNA strand exchange protein catalyzes the central step in homologous recombination, a cellular process fundamentally important for accurate repair of damaged chromosomes, preservation of the genetic integrity, restart of collapsed replication forks and telomere maintenance. BRCA2 protein, a product of the breast cancer susceptibility gene, is a key recombination mediator that interacts with RAD51 and facilitates RAD51 nucleoprotein filament formation on single-stranded DNA generated at the sites of DNA damage. An accurate atomistic level description of this interaction, however, is limited to a partial crystal structure of the RAD51 core fused to BRC4 peptide. Here, by integrating homology modeling and molecular dynamics, we generated a structure of the full-length RAD51 in complex with BRC4 peptide. Our model predicted previously unknown hydrogen bonding patterns involving the N-terminal domain (NTD) of RAD51. These interactions guide positioning of the BRC4 peptide within a cavity between the core and the NTDs; the peptide binding separates the two domains and restricts internal dynamics of RAD51 protomers. The model's depiction of the RAD51-BRC4 complex was validated by free energy calculations and in vitro functional analysis of rationally designed mutants. All generated mutants, RAD51(E42A), RAD51(E59A), RAD51(E237A), RAD51(E59A/E237A) and RAD51(E42A/E59A/E237A) maintained basic biochemical activities of the wild-type RAD51, but displayed reduced affinities for the BRC4 peptide. Strong correlation between the calculated and experimental binding energies confirmed the predicted structure of the RAD51-BRC4 complex and highlighted the importance of RAD51 NTD in RAD51-BRCA2 interaction.
RAD51 DNA 链交换蛋白催化同源重组的核心步骤,这是一个对准确修复受损染色体、保护遗传完整性、重新启动崩溃的复制叉以及端粒维持至关重要的细胞过程。BRCA2 蛋白是乳腺癌易感基因的产物,是一种关键的重组介质,与 RAD51 相互作用,并促进 RAD51 核蛋白丝在 DNA 损伤部位产生的单链 DNA 上的形成。然而,对这种相互作用的准确原子水平描述仅限于 RAD51 核心与 BRC4 肽的部分晶体结构。在这里,通过整合同源建模和分子动力学,我们生成了全长 RAD51 与 BRC4 肽复合物的结构。我们的模型预测了以前未知的涉及 RAD51 的 N 端结构域(NTD)的氢键模式。这些相互作用指导 BRC4 肽在核心和 NTDs 之间的空腔内的定位;肽结合将两个结构域分开,并限制 RAD51 单体的内部动力学。该模型对 RAD51-BRC4 复合物的描述通过自由能计算和合理设计突变体的体外功能分析得到了验证。所有生成的突变体,RAD51(E42A)、RAD51(E59A)、RAD51(E237A)、RAD51(E59A/E237A)和 RAD51(E42A/E59A/E237A),都保持了野生型 RAD51 的基本生化活性,但对 BRC4 肽的亲和力降低。计算和实验结合能之间的强相关性证实了 RAD51-BRC4 复合物的预测结构,并强调了 RAD51 NTD 在 RAD51-BRCA2 相互作用中的重要性。