Dodd Lori E, Korn Edward L, Freidlin Boris, Gu Wenjuan, Abrams Jeffrey S, Bushnell William D, Canetta Renzo, Doroshow James H, Gray Robert J, Sridhara Rajeshwari
aBiostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
Clin Trials. 2013 Oct;10(5):754-60. doi: 10.1177/1740774513493973. Epub 2013 Aug 9.
Measurement error in time-to-event end points complicates interpretation of treatment effects in clinical trials. Non-differential measurement error is unlikely to produce large bias [1]. When error depends on treatment arm, bias is of greater concern. Blinded-independent central review (BICR) of all images from a trial is commonly undertaken to mitigate differential measurement-error bias that may be present in hazard ratios (HRs) based on local evaluations. Similar BICR and local evaluation HRs may provide reassurance about the treatment effect, but BICR adds considerable time and expense to trials.
We describe a BICR audit strategy [2] and apply it to five randomized controlled trials to evaluate its use and to provide practical guidelines. The strategy requires BICR on a subset of study subjects, rather than a complete-case BICR, and makes use of an auxiliary-variable estimator.
When the effect size is relatively large, the method provides a substantial reduction in the size of the BICRs. In a trial with 722 participants and a HR of 0.48, an average audit of 28% of the data was needed and always confirmed the treatment effect as assessed by local evaluations. More moderate effect sizes and/or smaller trial sizes required larger proportions of audited images, ranging from 57% to 100% for HRs ranging from 0.55 to 0.77 and sample sizes between 209 and 737.
The method is developed for a simple random sample of study subjects. In studies with low event rates, more efficient estimation may result from sampling individuals with events at a higher rate.
The proposed strategy can greatly decrease the costs and time associated with BICR, by reducing the number of images undergoing review. The savings will depend on the underlying treatment effect and trial size, with larger treatment effects and larger trials requiring smaller proportions of audited data.
事件发生时间终点的测量误差使临床试验中治疗效果的解释变得复杂。非差异性测量误差不太可能产生大的偏差[1]。当误差取决于治疗组时,偏差更值得关注。通常会对试验中的所有图像进行盲法独立中央审查(BICR),以减轻基于局部评估的风险比(HR)中可能存在的差异性测量误差偏差。相似的BICR和局部评估HR可能会让人对治疗效果放心,但BICR会给试验增加大量时间和费用。
我们描述了一种BICR审核策略[2],并将其应用于五项随机对照试验,以评估其用途并提供实用指南。该策略要求对一部分研究对象进行BICR,而不是对所有病例进行BICR,并使用辅助变量估计器。
当效应量相对较大时,该方法可大幅减少BICR的规模。在一项有722名参与者且HR为0.48的试验中,平均需要审核28%的数据,且总能确认局部评估所评估的治疗效果。效应量适中及/或试验规模较小时,需要审核的图像比例更大,HR在0.55至0.77之间且样本量在209至737之间时,审核比例在57%至100%之间。
该方法是针对研究对象的简单随机样本开发的。在事件发生率较低的研究中,以较高比例对发生事件的个体进行抽样可能会得到更有效的估计。
所提出的策略可通过减少需审查的图像数量,大幅降低与BICR相关的成本和时间。节省的成本将取决于潜在的治疗效果和试验规模,治疗效果越大、试验规模越大,所需审核数据的比例越小。