Suppr超能文献

50 岁及以上白人女性的乳腺癌、子宫内膜癌和卵巢癌风险预测:来自基于人群的队列研究的推导和验证。

Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies.

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Med. 2013;10(7):e1001492. doi: 10.1371/journal.pmed.1001492. Epub 2013 Jul 30.

Abstract

BACKGROUND

Breast, endometrial, and ovarian cancers share some hormonal and epidemiologic risk factors. While several models predict absolute risk of breast cancer, there are few models for ovarian cancer in the general population, and none for endometrial cancer.

METHODS AND FINDINGS

Using data on white, non-Hispanic women aged 50+ y from two large population-based cohorts (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial [PLCO] and the National Institutes of Health-AARP Diet and Health Study [NIH-AARP]), we estimated relative and attributable risks and combined them with age-specific US-population incidence and competing mortality rates. All models included parity. The breast cancer model additionally included estrogen and progestin menopausal hormone therapy (MHT) use, other MHT use, age at first live birth, menopausal status, age at menopause, family history of breast or ovarian cancer, benign breast disease/biopsies, alcohol consumption, and body mass index (BMI); the endometrial model included menopausal status, age at menopause, BMI, smoking, oral contraceptive use, MHT use, and an interaction term between BMI and MHT use; the ovarian model included oral contraceptive use, MHT use, and family history or breast or ovarian cancer. In independent validation data (Nurses' Health Study cohort) the breast and ovarian cancer models were well calibrated; expected to observed cancer ratios were 1.00 (95% confidence interval [CI]: 0.96-1.04) for breast cancer and 1.08 (95% CI: 0.97-1.19) for ovarian cancer. The number of endometrial cancers was significantly overestimated, expected/observed = 1.20 (95% CI: 1.11-1.29). The areas under the receiver operating characteristic curves (AUCs; discriminatory power) were 0.58 (95% CI: 0.57-0.59), 0.59 (95% CI: 0.56-0.63), and 0.68 (95% CI: 0.66-0.70) for the breast, ovarian, and endometrial models, respectively.

CONCLUSIONS

These models predict absolute risks for breast, endometrial, and ovarian cancers from easily obtainable risk factors and may assist in clinical decision-making. Limitations are the modest discriminatory ability of the breast and ovarian models and that these models may not generalize to women of other races. Please see later in the article for the Editors' Summary.

摘要

背景

乳腺癌、子宫内膜癌和卵巢癌具有一些共同的激素和流行病学风险因素。有几个预测乳腺癌绝对风险的模型,但针对普通人群的卵巢癌模型很少,针对子宫内膜癌的模型则没有。

方法和发现

我们使用了来自两个大型人群队列(前列腺癌、肺癌、结直肠癌和卵巢癌筛查试验 [PLCO]和美国国立卫生研究院-美国退休人员协会饮食与健康研究 [NIH-AARP])中 50 岁以上的白种、非西班牙裔女性的数据,估计了相对风险和可归因风险,并将其与特定年龄的美国人群发病率和竞争死亡率相结合。所有模型均包含生育史。乳腺癌模型还包含了雌激素和孕激素绝经激素治疗(MHT)使用、其他 MHT 使用、首次活产年龄、绝经状态、绝经年龄、乳腺癌或卵巢癌家族史、良性乳腺疾病/活检、酒精摄入和体重指数(BMI);子宫内膜癌模型包含了绝经状态、绝经年龄、BMI、吸烟、口服避孕药使用、MHT 使用以及 BMI 和 MHT 使用之间的交互项;卵巢癌模型包含了口服避孕药使用、MHT 使用以及乳腺癌或卵巢癌家族史或个人史。在独立的验证数据(护士健康研究队列)中,乳腺癌和卵巢癌模型的校准效果良好;乳腺癌的预期观察比为 1.00(95%置信区间 [CI]:0.96-1.04),卵巢癌为 1.08(95% CI:0.97-1.19)。子宫内膜癌的病例数被显著高估,预期观察比为 1.20(95% CI:1.11-1.29)。受体操作特征曲线下面积(AUC;区分能力)分别为 0.58(95% CI:0.57-0.59)、0.59(95% CI:0.56-0.63)和 0.68(95% CI:0.66-0.70),分别用于乳腺癌、卵巢癌和子宫内膜癌模型。

结论

这些模型可以根据容易获得的风险因素预测乳腺癌、子宫内膜癌和卵巢癌的绝对风险,可能有助于临床决策。局限性在于乳腺癌和卵巢癌模型的区分能力有限,并且这些模型可能不适用于其他种族的女性。请在文章后面查看编辑摘要。

相似文献

3
Body mass index and risk of ovarian cancer.体重指数与卵巢癌风险
Cancer. 2009 Feb 15;115(4):812-22. doi: 10.1002/cncr.24086.

引用本文的文献

2
Exogenous Hormones, Tumor Intrinsic Subtypes, and Breast Cancer.外源性激素、肿瘤内在亚型与乳腺癌
JAMA Netw Open. 2025 Jul 1;8(7):e2519236. doi: 10.1001/jamanetworkopen.2025.19236.
5
Breast cancer: pathogenesis and treatments.乳腺癌:发病机制与治疗方法
Signal Transduct Target Ther. 2025 Feb 19;10(1):49. doi: 10.1038/s41392-024-02108-4.

本文引用的文献

2
Risk factor modification and projections of absolute breast cancer risk.风险因素的改变和绝对乳腺癌风险的预测。
J Natl Cancer Inst. 2011 Jul 6;103(13):1037-48. doi: 10.1093/jnci/djr172. Epub 2011 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验