Human Immunity Laboratory and Cellular Immunology Laboratory, Queensland Institute of Medical Research , Brisbane, QLD , Australia ; School of Medicine, The University of Queensland , Brisbane, QLD , Australia.
Front Immunol. 2013 Aug 5;4:229. doi: 10.3389/fimmu.2013.00229. eCollection 2013.
T-cell receptor (TCR) therapy has arrived as a realistic treatment option for many human diseases. TCR gene therapy allows for the mass redirection of T-cells against a defined antigen while high affinity TCR engineering allows for the creation of a new class of soluble drugs. However, deciding which TCR blueprint to take forward for gene therapy or engineering is difficult. More than one quintillion TCR combinations can be generated by somatic recombination and we are only now beginning to appreciate that not all are functionally equal. TCRs can exhibit high or low degrees of HLA-restricted cross-reactivity and alloreact against one or a combination of HLA alleles. Identifying TCR candidates with high specificity and minimal cross-reactivity/alloreactivity footprints before engineering is obviously highly desirable. Here we will summarize what we currently know about TCR biology with regard to immunoengineering.
T 细胞受体(TCR)治疗已经成为许多人类疾病的一种切实可行的治疗选择。TCR 基因治疗允许大量重定向 T 细胞针对特定抗原,而高亲和力 TCR 工程则允许创建一类新的可溶性药物。然而,决定采用哪种 TCR 蓝图进行基因治疗或工程是困难的。体细胞重组可以产生超过五千万亿种 TCR 组合,而我们现在才开始意识到并非所有 TCR 组合都是功能等同的。TCR 可以表现出高度或低度的 HLA 限制交叉反应性,并且针对一个或多个 HLA 等位基因发生同种异体反应。在工程设计之前,鉴定具有高特异性和最小交叉反应性/同种异体反应性足迹的 TCR 候选物显然是非常理想的。在这里,我们将总结目前我们所了解的 TCR 生物学与免疫工程学相关的内容。