Suppr超能文献

组织光学特性的体内局部测定:在人脑中的应用

In vivo local determination of tissue optical properties: applications to human brain.

作者信息

Bevilacqua F, Piguet D, Marquet P, Gross J D, Tromberg B J, Depeursinge C

机构信息

Department of Micro-Engineering, Institute of Applied Optics, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland.

出版信息

Appl Opt. 1999 Aug 1;38(22):4939-50. doi: 10.1364/ao.38.004939.

Abstract

Local and superficial near-infrared (NIR) optical-property characterization of turbid biological tissues can be achieved by measurement of spatially resolved diffuse reflectance at small source-detector separations (<1.4 mm). However, in these conditions the inverse problem, i.e., calculation of localized absorption and the reduced scattering coefficients, is necessarily sensitive to the scattering phase function. This effect can be minimized if a new parameter of the phase function gamma, which depends on the first and the second moments of the phase function, is known. If gamma is unknown, an estimation of this parameter can be obtained by the measurement, but the uncertainty of the absorption coefficient is increased. A spatially resolved reflectance probe employing multiple detector fibers (0.3-1.4 mm from the source) is described. Monte Carlo simulations are used to determine gamma, the reduced scattering and absorption coefficients from reflectance data. Probe performance is assessed by measurements on phantoms, the optical properties of which were measured by other techniques [frequency domain photon migration (FDPM) and spatially resolved transmittance]. Our results show that changes in the absorption coefficient, the reduced scattering coefficient, and gamma can be measured to within +/-0.005 mm(-1), +/-0.05 mm(-1), and +/-0.2, respectively. In vivo measurements performed intraoperatively on a human skull and brain are reported for four NIR wavelengths (674, 811, 849, 956 nm) when the spatially resolved probe and FDPM are used. The spatially resolved probe shows optimum measurement sensitivity in the measurement volume immediately beneath the probe (typically 1 mm(3) in tissues), whereas FDPM typically samples larger regions of tissues. Optical-property values for human skull, white matter, scar tissue, optic nerve, and tumors are reported that show distinct absorption and scattering differences between structures and a dependence on the phase-function parameter gamma.

摘要

通过在小源探测器间距(<1.4毫米)下测量空间分辨的漫反射率,可以实现对浑浊生物组织的局部和表面近红外(NIR)光学特性表征。然而,在这些条件下,反问题,即局部吸收和约化散射系数的计算,必然对散射相函数敏感。如果已知相函数γ的一个新参数(它取决于相函数的一阶和二阶矩),则这种影响可以最小化。如果γ未知,可以通过测量获得该参数的估计值,但吸收系数的不确定性会增加。本文描述了一种采用多根探测器光纤(距光源0.3 - 1.4毫米)的空间分辨反射探头。利用蒙特卡罗模拟从反射率数据确定γ、约化散射系数和吸收系数。通过对体模进行测量来评估探头性能,体模的光学特性通过其他技术[频域光子迁移(FDPM)和空间分辨透射率]进行测量。我们的结果表明,吸收系数、约化散射系数和γ的变化分别可以测量到±0.005毫米⁻¹、±0.05毫米⁻¹和±0.2以内。报告了在使用空间分辨探头和FDPM时,对四个近红外波长(674、811、849、956纳米)在人颅骨和大脑上进行的术中体内测量。空间分辨探头在探头正下方的测量体积(组织中通常为1立方毫米)中显示出最佳测量灵敏度,而FDPM通常对更大的组织区域进行采样。报告了人颅骨、白质、瘢痕组织、视神经和肿瘤的光学特性值,这些值显示出不同结构之间明显的吸收和散射差异以及对相函数参数γ的依赖性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验