Wang Qing, Liu Jin-Xin, Zhang Wei-Jia, Zhang Tong-Wei, Yang Jing, Li Ying
State Key Laboratories for Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; France-China Bio-mineralization and Nano-structure Laboratory, Beijing, China.
FEMS Microbiol Lett. 2013 Oct;347(2):163-72. doi: 10.1111/1574-6968.12234. Epub 2013 Sep 6.
To evaluate the expression patterns of genes involved in iron and oxygen metabolism during magnetosome formation, the profiles of 13 key genes in Magnetospirillum gryphiswaldense MSR-1 cells cultured under high-iron vs. low-iron conditions were examined. Cell growth rates did not differ between the two conditions. Only the high-iron cells produced magnetosomes. Transmission electron microscopy observations revealed that magnetosome formation began at 6 h and crystal maturation occurred from 10 to 18 h. Real-time polymerase chain reaction analysis showed that expression of these genes increased during cell growth and magnetosome synthesis, particularly for ferric reductase gene (fer6) and ferrous transport system-related genes feoAB1, feoAB2, sodB, and katG. The low-iron cells showed increased expression of feoAB1 and feoB2 from 12 to 18 h but no clear expression changes for the other genes. Expression patterns of the genes were divided by hierarchical clustering into four clusters for the high-iron cells and three clusters for the low-iron cells. Each cluster included both iron and oxygen metabolism genes showing similar expression patterns. The findings indicate the coordination and co-dependence of iron and oxygen metabolism gene activity to achieve a balance during the biomineralization process. Future transcriptome analysis will help elucidate the mechanism of biomineralization in MSR-1 magnetosome formation.
为了评估磁小体形成过程中参与铁和氧代谢的基因的表达模式,研究了在高铁与低铁条件下培养的嗜盐碱红螺菌MSR-1细胞中13个关键基因的表达谱。两种条件下细胞生长速率没有差异。只有高铁细胞产生磁小体。透射电子显微镜观察显示,磁小体形成于6小时开始,晶体成熟发生在10至18小时。实时聚合酶链反应分析表明,这些基因的表达在细胞生长和磁小体合成过程中增加,特别是铁还原酶基因(fer6)以及与亚铁转运系统相关的基因feoAB1、feoAB2、sodB和katG。低铁细胞在12至18小时显示feoAB1和feoB2表达增加,但其他基因没有明显的表达变化。通过层次聚类将高铁细胞的基因表达模式分为四个簇,低铁细胞分为三个簇。每个簇都包括显示相似表达模式的铁和氧代谢基因。这些发现表明,在生物矿化过程中,铁和氧代谢基因活性相互协调、相互依赖,以实现平衡。未来的转录组分析将有助于阐明MSR-1磁小体形成过程中的生物矿化机制。