Department of Chemical and Biomolecular Engineering, University of California-Berkeley , Berkeley, California 94720, United States.
J Phys Chem B. 2013 Dec 12;117(49):15591-605. doi: 10.1021/jp405983d. Epub 2013 Sep 20.
The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.
沿着明确定义的坐标的蛋白质动力学可以形式上投影到过阻尼 Lange维方程的形式上。在这里,我们提出了一个全面的统计学习框架,用于从单分子Förster 型共振能量转移 (smFRET) 实验同时定量确定力(平均力势,PMF)和随机力(由扩散系数 D 表征)。 Lange维参数 PMF 和 D 的似然函数由遵循 Lange维动力学的潜在 smFRET 距离的路径积分表示,并由供体和受体光子发射实现。该解通过与光子统计相结合的相应福克-普朗克方程时间对称形式的特征分解来实现。为了从光子到达时间数据中提取 Lange维参数,我们将统计学习中原先为离散状态系统开发并主要用于离散状态系统的期望最大化算法推进到连续空间中的一般形式,从而可以对连续 PMF 函数进行变分计算。我们还基于最大轨迹熵原理在基于贝叶斯推理的这种正则化解决方案空间。我们使用具有真实模拟 smFRET 数据的高度非平凡示例来说明这种新方法的应用。