Suppr超能文献

从泛化到灵活模型的准确解释

Moving beyond generalization to accurate interpretation of flexible models.

作者信息

Genkin Mikhail, Engel Tatiana A

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.

出版信息

Nat Mach Intell. 2020 Nov;2(11):674-683. doi: 10.1038/s42256-020-00242-6. Epub 2020 Oct 26.

Abstract

Machine learning optimizes flexible models to predict data. In scientific applications, there is a rising interest in interpreting these flexible models to derive hypotheses from data. However, it is unknown whether good data prediction guarantees accurate interpretation of flexible models. Here we test this connection using a flexible, yet intrinsically interpretable framework for modelling neural dynamics. We find that many models discovered during optimization predict data equally well, yet they fail to match the correct hypothesis. We develop an alternative approach that identifies models with correct interpretation by comparing model features across data samples to separate true features from noise. We illustrate our findings using recordings of spiking activity from the visual cortex of behaving monkeys. Our results reveal that good predictions cannot substitute for accurate interpretation of flexible models and offer a principled approach to identify models with correct interpretation.

摘要

机器学习优化灵活的模型以预测数据。在科学应用中,人们越来越有兴趣解释这些灵活的模型,以便从数据中得出假设。然而,尚不清楚良好的数据预测是否能保证对灵活模型的准确解释。在这里,我们使用一个灵活但本质上可解释的框架来测试这种联系,该框架用于对神经动力学进行建模。我们发现,在优化过程中发现的许多模型对数据的预测同样良好,但它们未能与正确的假设相匹配。我们开发了一种替代方法,通过比较跨数据样本的模型特征,将真实特征与噪声分离,从而识别具有正确解释的模型。我们使用行为猴子视觉皮层的尖峰活动记录来说明我们的发现。我们的结果表明,良好的预测不能替代对灵活模型的准确解释,并提供了一种有原则的方法来识别具有正确解释的模型。

相似文献

1
Moving beyond generalization to accurate interpretation of flexible models.从泛化到灵活模型的准确解释
Nat Mach Intell. 2020 Nov;2(11):674-683. doi: 10.1038/s42256-020-00242-6. Epub 2020 Oct 26.
2
Predicting genetic regulatory response using classification.使用分类方法预测基因调控反应。
Bioinformatics. 2004 Aug 4;20 Suppl 1:i232-40. doi: 10.1093/bioinformatics/bth923.
9
A freely-moving monkey treadmill model.一种自由活动的猴子跑步机模型。
J Neural Eng. 2014 Aug;11(4):046020. doi: 10.1088/1741-2560/11/4/046020. Epub 2014 Jul 4.

引用本文的文献

6
A unifying perspective on neural manifolds and circuits for cognition.对认知的神经流形和回路的统一观点。
Nat Rev Neurosci. 2023 Jun;24(6):363-377. doi: 10.1038/s41583-023-00693-x. Epub 2023 Apr 13.
7
A flexible Bayesian framework for unbiased estimation of timescales.一种用于无偏估计时间尺度的灵活贝叶斯框架。
Nat Comput Sci. 2022 Mar;2(3):193-204. doi: 10.1038/s43588-022-00214-3. Epub 2022 Mar 24.

本文引用的文献

2
Reconciling modern machine-learning practice and the classical bias-variance trade-off.调和现代机器学习实践与经典偏差-方差权衡。
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15849-15854. doi: 10.1073/pnas.1903070116. Epub 2019 Jul 24.
8
Sparse learning of stochastic dynamical equations.随机动力方程的稀疏学习。
J Chem Phys. 2018 Jun 28;148(24):241723. doi: 10.1063/1.5018409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验