Genkin Mikhail, Engel Tatiana A
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.
Nat Mach Intell. 2020 Nov;2(11):674-683. doi: 10.1038/s42256-020-00242-6. Epub 2020 Oct 26.
Machine learning optimizes flexible models to predict data. In scientific applications, there is a rising interest in interpreting these flexible models to derive hypotheses from data. However, it is unknown whether good data prediction guarantees accurate interpretation of flexible models. Here we test this connection using a flexible, yet intrinsically interpretable framework for modelling neural dynamics. We find that many models discovered during optimization predict data equally well, yet they fail to match the correct hypothesis. We develop an alternative approach that identifies models with correct interpretation by comparing model features across data samples to separate true features from noise. We illustrate our findings using recordings of spiking activity from the visual cortex of behaving monkeys. Our results reveal that good predictions cannot substitute for accurate interpretation of flexible models and offer a principled approach to identify models with correct interpretation.
机器学习优化灵活的模型以预测数据。在科学应用中,人们越来越有兴趣解释这些灵活的模型,以便从数据中得出假设。然而,尚不清楚良好的数据预测是否能保证对灵活模型的准确解释。在这里,我们使用一个灵活但本质上可解释的框架来测试这种联系,该框架用于对神经动力学进行建模。我们发现,在优化过程中发现的许多模型对数据的预测同样良好,但它们未能与正确的假设相匹配。我们开发了一种替代方法,通过比较跨数据样本的模型特征,将真实特征与噪声分离,从而识别具有正确解释的模型。我们使用行为猴子视觉皮层的尖峰活动记录来说明我们的发现。我们的结果表明,良好的预测不能替代对灵活模型的准确解释,并提供了一种有原则的方法来识别具有正确解释的模型。