National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, Maryland 20894, USA.
Biol Direct. 2013 Aug 11;8:19. doi: 10.1186/1745-6150-8-19.
Non-linear, parabolic (sub-exponential) and hyperbolic (super-exponential) models of prebiological evolution of molecular replicators have been proposed and extensively studied. The parabolic models appear to be the most realistic approximations of real-life replicator systems due primarily to product inhibition. Unlike the more traditional exponential models, the distribution of individual frequencies in an evolving parabolic population is not described by the Maximum Entropy (MaxEnt) Principle in its traditional form, whereby the distribution with the maximum Shannon entropy is chosen among all the distributions that are possible under the given constraints. We sought to identify a more general form of the MaxEnt principle that would be applicable to parabolic growth.
We consider a model of a population that reproduces according to the parabolic growth law and show that the frequencies of individuals in the population minimize the Tsallis relative entropy (non-additive information gain) at each time moment. Next, we consider a model of a parabolically growing population that maintains a constant total size and provide an "implicit" solution for this system. We show that in this case, the frequencies of the individuals in the population also minimize the Tsallis information gain at each moment of the 'internal time" of the population.
The results of this analysis show that the general MaxEnt principle is the underlying law for the evolution of a broad class of replicator systems including not only exponential but also parabolic and hyperbolic systems. The choice of the appropriate entropy (information) function depends on the growth dynamics of a particular class of systems. The Tsallis entropy is non-additive for independent subsystems, i.e. the information on the subsystems is insufficient to describe the system as a whole. In the context of prebiotic evolution, this "non-reductionist" nature of parabolic replicator systems might reflect the importance of group selection and competition between ensembles of cooperating replicators.
已经提出并广泛研究了分子复制子的前生物进化的非线性、抛物线(亚指数)和双曲线(超指数)模型。抛物线模型由于产物抑制,似乎是最接近现实生活中复制子系统的现实近似。与更传统的指数模型不同,在进化的抛物线种群中,个体频率的分布不是通过传统形式的最大熵(MaxEnt)原理来描述的,在传统形式中,选择具有最大香农熵的分布,而该分布是在给定约束下所有可能的分布中选择的。我们试图确定一种更一般的 MaxEnt 原理形式,使其适用于抛物线增长。
我们考虑了一个根据抛物线生长律繁殖的种群模型,并表明种群中个体的频率在每个时间点都使个体的 Tsallis 相对熵(非加性信息增益)最小化。接下来,我们考虑了一个抛物线增长种群的模型,并保持种群的总大小不变,并为这个系统提供了一个“隐式”解。我们表明,在这种情况下,种群中个体的频率也在种群的“内部时间”的每个时刻使 Tsallis 信息增益最小化。
这项分析的结果表明,一般的 MaxEnt 原理是广泛的复制子系统进化的基本规律,包括不仅是指数系统,还有抛物线和双曲线系统。适当的熵(信息)函数的选择取决于特定类系统的增长动态。对于独立的子系统,Tsallis 熵是非加性的,即关于子系统的信息不足以描述整个系统。在原始生物进化的背景下,抛物线复制子系统的这种“非还原论”性质可能反映了群体选择和合作复制子集合之间竞争的重要性。