Suppr超能文献

用于植物根系原位成像的光片层扫描技术(LST)

Light Sheet Tomography (LST) for in situ imaging of plant roots.

作者信息

Yang Zhengyi, Downie Helen, Rozbicki Emil, Dupuy Lionel X, MacDonald Michael P

机构信息

Institute of Medical Science and Technology, University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee DD2 1FD, Scotland, UK.

出版信息

Opt Express. 2013 Jul 15;21(14):16239-47. doi: 10.1364/OE.21.016239.

Abstract

The production of crops capable of efficient nutrient use is essential for addressing the problem of global food security. The ability of a plant's root system to interact with the soil micro-environment determines how effectively it can extract water and nutrients. In order to assess this ability and develop the fast and cost effective phenotyping techniques which are needed to establish efficient root systems, in situ imaging in soil is required. To date this has not been possible due to the high density of scatterers and absorbers in soil or because other growth substrates do not sufficiently model the heterogeneity of a soil's microenvironment. We present here a new form of light sheet imaging with novel transparent soil containing refractive index matched particles. This imaging method does not rely on fluorescence, but relies solely on scattering from root material. We term this form of imaging Light Sheet Tomography (LST). We have tested LST on a range of materials and plant roots in transparent soil and gel. Due to the low density of root structures, i.e. relatively large spaces between adjacent roots, long-term monitoring of lettuce root development in situ with subsequent quantitative analysis was achieved.

摘要

培育能够高效利用养分的作物对于解决全球粮食安全问题至关重要。植物根系与土壤微环境相互作用的能力决定了其从土壤中提取水分和养分的效率。为了评估这种能力并开发建立高效根系所需的快速且经济高效的表型分析技术,需要在土壤中进行原位成像。迄今为止,由于土壤中散射体和吸收体的密度较高,或者由于其他生长基质无法充分模拟土壤微环境的异质性,这一目标尚未实现。我们在此展示一种新型的光片成像技术,使用含有折射率匹配颗粒的新型透明土壤。这种成像方法不依赖于荧光,仅依靠根系材料的散射。我们将这种成像形式称为光片断层扫描(LST)。我们已经在透明土壤和凝胶中的一系列材料和植物根系上测试了LST。由于根系结构密度较低,即相邻根系之间的空间相对较大,因此能够对生菜根系发育进行原位长期监测并随后进行定量分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验