Suppr超能文献

Mobile device camera design with Q-type polynomials to achieve higher production yield.

作者信息

Ma Bin, Sharma Katelynn, Thompson Kevin P, Rolland Jannick P

机构信息

The Institute of Optics, University of Rochester, 275 Hutchinson Road, Rochester, New York 14627, USA.

出版信息

Opt Express. 2013 Jul 29;21(15):17454-63. doi: 10.1364/OE.21.017454.

Abstract

The camera lenses that are built into the current generation of mobile devices are extremely stressed by the excessively tight packaging requirements, particularly the length. As a result, the aspheric departures and slopes on the lens surfaces, when designed with conventional power series based aspheres, are well beyond those encountered in most optical systems. When the as-manufactured performance is considered, the excessive aspheric slopes result in unusually high sensitivity to tilt and decenter and even despace resulting in unusually low manufacturing yield. Q(bfs) polynomials, a new formulation for nonspherical optical surfaces introduced by Forbes, not only build on orthogonal polynomials, but their unique normalization provides direct access to the RMS slope of the aspheric departure during optimization. Using surface shapes with this description in optimization results in equivalent performance with reduced alignment sensitivity and higher yield. As an additional approach to increasing yield, mechanically imposed external pivot points, introduced by Bottema, can be used as a design technique to further reduce alignment sensitivity and increase yield. In this paper, the Q-type polynomials and external pivot points were applied to a mobile device camera lens designed using an active RMS slope constraint that was then compared to a design developed using conventional power series surface descriptions. Results show that slope constrained Q-type polynomial description together with external pivot points lead directly to solutions with significantly higher manufacturing yield.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验