Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
Rapid Commun Mass Spectrom. 2013 Sep 15;27(17):1977-82. doi: 10.1002/rcm.6658.
Fourier Transform Ion Cyclotron Resonance mass spectra exhibit improved resolving power, mass accuracy and signal-to-noise ratio when presented in absorption mode; a process which requires calculation of a phase correction function. Mass spectrometric images can contain many thousands of pixels; hence methods of decreasing the time required to solve for a phase correction function will result in significant improvements in this application.
A genetic algorithm approach for optimizing the phase correction function has been developed and compared with a previously described convergent iteration technique.
The genetic algorithm method has been shown to offer a five-fold improvement in processing speed compared with the previous iterative approach used in the Autophaser algorithm, while maintaining the levels of accuracy. This translates to an 11 hour improvement in processing for a 20 000 pixel mass spectrometric image.
The genetic algorithm method described in this manuscript offers significant processing speed advantages over the previously described convergent iteration technique. This improvement is key to allowing the future routine use of absorption mode mass spectrometric images.
傅里叶变换离子回旋共振质谱在吸收模式下展示出更高的分辨率、质量精度和信噪比;这一过程需要计算相位校正函数。质谱图像可能包含数千个像素;因此,减少求解相位校正函数所需时间的方法将显著改进这一应用。
开发了一种遗传算法方法来优化相位校正函数,并与先前描述的收敛迭代技术进行了比较。
与 Autophaser 算法中先前使用的迭代方法相比,遗传算法方法在处理速度方面提高了五倍,同时保持了精度水平。这意味着对于一个 20000 像素的质谱图像,处理速度提高了 11 小时。
本文中描述的遗传算法方法在处理速度方面相对于先前描述的收敛迭代技术具有显著优势。这种改进对于允许未来常规使用吸收模式质谱图像至关重要。