Department of Toxicogenomics, Maastricht University, 6200 Maastricht, The Netherlands.
Carcinogenesis. 2014 Jan;35(1):201-7. doi: 10.1093/carcin/bgt278. Epub 2013 Aug 12.
One of the main challenges of toxicology is the accurate prediction of compound carcinogenicity. The default test model for assessing chemical carcinogenicity, the 2 year rodent cancer bioassay, is currently criticized because of its limited specificity. With increased societal attention and new legislation against animal testing, toxicologists urgently need an alternative to the current rodent bioassays for chemical cancer risk assessment. Toxicogenomics approaches propose to use global high-throughput technologies (transcriptomics, proteomics and metabolomics) to study the toxic effect of compounds on a biological system. Here, we demonstrate the improvement of transcriptomics assay consisting of primary human hepatocytes to predict the putative liver carcinogenicity of several compounds by applying the connectivity map methodology. Our analyses underline that connectivity mapping is useful for predicting compound carcinogenicity by connecting in vivo expression profiles from human cancer tissue samples with in vitro toxicogenomics data sets. Furthermore, the importance of time and dose effect on carcinogenicity prediction is demonstrated, showing best prediction for low dose and 24 h exposure of potential carcinogens.
毒理学面临的主要挑战之一是准确预测化合物的致癌性。目前,评估化学致癌性的默认测试模型——2 年啮齿动物癌症生物测定法,因其特异性有限而受到批评。随着社会对动物测试的关注增加和新的立法反对动物测试,毒理学家迫切需要一种替代目前用于化学致癌风险评估的啮齿动物生物测定法的方法。毒代动力学方法建议使用全局高通量技术(转录组学、蛋白质组学和代谢组学)来研究化合物对生物系统的毒性作用。在这里,我们通过应用连接图谱方法,证明了由原代人肝细胞组成的转录组学测定法的改进,可用于预测几种化合物的潜在肝脏致癌性。我们的分析强调了连接图谱在通过将来自人类癌症组织样本的体内表达谱与体外毒代动力学数据集进行连接来预测化合物致癌性方面的有用性。此外,还证明了时间和剂量效应对致癌性预测的重要性,对于低剂量和 24 小时暴露的潜在致癌物质,预测效果最佳。