Suppr超能文献

用置换和转移熵估计尖峰序列之间的时间因果相互作用。

Estimating temporal causal interaction between spike trains with permutation and transfer entropy.

机构信息

Institute of Information Science and Engineering, Yanshan University, Qinhuangdao, China.

出版信息

PLoS One. 2013 Aug 5;8(8):e70894. doi: 10.1371/journal.pone.0070894. Print 2013.

Abstract

Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich's neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich's cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding.

摘要

估计神经元之间的因果相互作用对于更好地理解神经元网络中的功能连接非常重要。我们提出了一种称为归一化排列转移熵(NPTE)的方法来评估尖峰序列之间的时间因果相互作用,该方法量化了在另一个神经元中出现的神经元中有序信息的分数。该方法的性能使用由 Izhikevich 神经元模型生成的尖峰序列进行评估。结果表明,NPTE 方法可以在不影响数据长度的情况下有效估计两个神经元之间的因果相互作用。考虑到估计的时滞精度和信息流估计对神经元发放率的鲁棒性,NPTE 方法优于其他信息论方法,包括归一化转移熵、符号转移熵和排列条件互信息。为了测试 NPTE 在分析模拟生物物理真实突触上的性能,使用了基于神经元模型的 Izhikevich 皮质网络。结果发现,NPTE 方法能够准确地描述三个神经元网络中的相互作用,并识别虚假因果关系。我们得出结论,所提出的方法可以更可靠地比较不同神经元对之间的相互作用,并且是揭示神经编码更多细节的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/208c/3733844/55d425748a27/pone.0070894.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验