Macke Jakob H, Berens Philipp, Ecker Alexander S, Tolias Andreas S, Bethge Matthias
Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.
Neural Comput. 2009 Feb;21(2):397-423. doi: 10.1162/neco.2008.02-08-713.
Spike trains recorded from populations of neurons can exhibit substantial pairwise correlations between neurons and rich temporal structure. Thus, for the realistic simulation and analysis of neural systems, it is essential to have efficient methods for generating artificial spike trains with specified correlation structure. Here we show how correlated binary spike trains can be simulated by means of a latent multivariate gaussian model. Sampling from the model is computationally very efficient and, in particular, feasible even for large populations of neurons. The entropy of the model is close to the theoretical maximum for a wide range of parameters. In addition, this framework naturally extends to correlations over time and offers an elegant way to model correlated neural spike counts with arbitrary marginal distributions.
从神经元群体记录的脉冲序列可能表现出神经元之间显著的成对相关性以及丰富的时间结构。因此,对于神经系统的逼真模拟和分析,拥有生成具有特定相关结构的人工脉冲序列的有效方法至关重要。在这里,我们展示了如何通过潜在多元高斯模型来模拟相关的二元脉冲序列。从该模型中采样在计算上非常高效,特别是对于大量神经元群体甚至也是可行的。在广泛的参数范围内,该模型的熵接近理论最大值。此外,这个框架自然地扩展到时间上的相关性,并提供了一种优雅的方式来对具有任意边际分布的相关神经脉冲计数进行建模。