Cioffi Sara, Martucciello Stefania, Fulcoli Filomena Gabriella, Bilio Marchesa, Ferrentino Rosa, Nusco Edoardo, Illingworth Elizabeth
Institute of Genetics and Biophysics 'ABT'.
Hum Mol Genet. 2014 Jan 1;23(1):78-89. doi: 10.1093/hmg/ddt400. Epub 2013 Aug 14.
The transcription factor TBX1 is the major gene involved in 22q11.2 deletion syndrome (22q11.2DS). Using mouse models of these diseases, we have previously shown that TBX1 activates VEGFR3 in endothelial cells (EC), and that this interaction is critical for the development of the lymphatic vasculature. In this study, we show that TBX1 regulates brain angiogenesis. Using loss-of-function genetics and molecular approaches, we show that TBX1 regulates the VEGFR3 and DLL4 genes in brain ECs. In mice, loss of TBX1 causes global brain vascular defects, comprising brain vessel hyperplasia, enhanced angiogenic sprouting and vessel network disorganization. This phenotype is recapitulated in EC-specific Tbx1 conditional mutants and in an EC-only 3-dimensional cell culture system (matrigel), indicating that the brain vascular phenotype is cell autonomous. Furthermore, EC-specific conditional Tbx1 mutants have poorly perfused brain vessels and brain hypoxia, indicating that the expanded vascular network is functionally impaired. In EC-matrigel cultures, a Notch1 agonist is able to partially rescue microtubule hyperbranching induced by TBX1 knockdown. Thus, we have identified a novel transcriptional regulator of angiogenesis that exerts its effect in brain by negatively regulating angiogenesis through the DLL4/Notch1-VEGFR3 regulatory axis. Given the similarity of the phenotypic consequences of TBX1 mutation in humans and mice, this unexpected role of TBX1 in murine brain vascularization should stimulate clinicians to search for brain microvascular anomalies in 22q11.2DS patients and to evaluate whether some of the anatomical and functional brain anomalies in patients may have a microvascular origin.
转录因子TBX1是参与22q11.2缺失综合征(22q11.2DS)的主要基因。利用这些疾病的小鼠模型,我们之前已经表明,TBX1在内皮细胞(EC)中激活VEGFR3,并且这种相互作用对于淋巴管系统的发育至关重要。在本研究中,我们表明TBX1调节脑内血管生成。使用功能缺失遗传学和分子方法,我们表明TBX1调节脑内皮细胞中的VEGFR3和DLL4基因。在小鼠中,TBX1的缺失导致全脑血管缺陷,包括脑血管增生、血管生成芽生增强和血管网络紊乱。这种表型在EC特异性Tbx1条件性突变体和仅在内皮细胞的三维细胞培养系统(基质胶)中得以重现,表明脑血管表型是细胞自主性的。此外,EC特异性条件性Tbx1突变体的脑血管灌注不良且存在脑缺氧,表明扩张的血管网络在功能上受损。在EC-基质胶培养物中,Notch1激动剂能够部分挽救由TBX1敲低诱导的微管过度分支。因此,我们鉴定出一种新的血管生成转录调节因子,其通过DLL4/Notch1-VEGFR3调节轴负向调节血管生成,从而在脑中发挥作用。鉴于人类和小鼠中TBX1突变的表型后果相似,TBX1在小鼠脑血管生成中的这一意外作用应促使临床医生在22q11.2DS患者中寻找脑微血管异常,并评估患者的一些解剖学和功能性脑异常是否可能起源于微血管。