Department of Biology, College of Charleston, Charleston, South Carolina; and.
J Neurophysiol. 2013 Nov;110(9):2217-26. doi: 10.1152/jn.00057.2013. Epub 2013 Aug 14.
Reduced neuronal activation to repetitive stimulation is a common feature of information processing in nervous systems. Such stimulus-specific adaptation (SSA) occurs in many systems, but the underlying neural mechanisms are not well understood. The Neoconocephalus (Orthoptera, Tettigoniidae) TN-1 auditory neuron exhibits an SSA-like process, characterized by reliably detecting deviant pulses after response cessation to common standard pulses. Therefore, TN-1 provides a model system to study the cellular mechanisms underlying SSA with an identified neuron. Here we test the hypothesis that dendritic mechanisms underlie TN-1 response cessation to fast-pulse rate repeated signals. Electrically stimulating TN-1 with either high-rate or continuous-current pulses resulted in a decreased ability in TN-1 to generate action potentials but failed to elicit cessation of spiking activity as observed with acoustic stimulation. BAPTA injection into TN-1 delayed the onset of response cessation to fast-pulse rate acoustic stimuli in TN-1 but did not eliminate it. These results indicate that calcium-mediated processes contribute to the fast cessation of spiking activity in TN-1 but are insufficient to cause spike cessation on its own. Replacing normal saline with low-Na(+) saline (replacing sodium chloride with either lithium chloride or choline chloride) eliminated response cessation, and TN-1 no longer responded selectively to the deviant pulses. Sodium-mediated potassium channels are the most likely candidates underlying sodium-mediated response suppression in TN-1, triggered by Na(+) influx in dendritic regions activated by acoustic stimuli. On the basis of these results, we present a model for a cellular mechanism for SSA in a single auditory neuron.
神经元对重复刺激的激活减少是神经系统信息处理的一个共同特征。这种刺激特异性适应(SSA)发生在许多系统中,但潜在的神经机制尚不清楚。Neoconocephalus(直翅目,螽斯科)TN-1 听觉神经元表现出类似 SSA 的过程,其特征是在对常见标准脉冲的反应停止后,可靠地检测到异常脉冲。因此,TN-1 为研究具有鉴定神经元的 SSA 的细胞机制提供了一个模型系统。在这里,我们检验了这样一个假设,即树突机制是 TN-1 对快速脉冲率重复信号停止反应的基础。用高脉冲率或连续电流脉冲电刺激 TN-1 会导致 TN-1 产生动作电位的能力降低,但不能像声学刺激那样引起尖峰活动的停止。将 BAPTA 注入 TN-1 会延迟 TN-1 对快速脉冲率声学刺激的反应停止,但不能消除它。这些结果表明,钙介导的过程有助于 TN-1 中快速停止尖峰活动,但不足以单独引起尖峰停止。用低钠盐水(用氯化锂或胆碱代替氯化钠)代替正常盐水会消除反应停止,TN-1 不再对异常脉冲有选择性反应。钠介导的钾通道是 TN-1 中钠介导的反应抑制的最可能候选者,这是由声学刺激激活的树突区域中的钠离子内流触发的。基于这些结果,我们提出了一个用于单个听觉神经元中 SSA 的细胞机制模型。