Institute of Biology, University of Graz, Universitaetsplatz 2, 8010, Graz, Austria.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 Oct;204(9-10):859-872. doi: 10.1007/s00359-018-1282-0. Epub 2018 Sep 17.
To function as a mechanism in premating isolation, the divergent and species-specific calling songs of acoustic insects must be reliably processed by the afferent auditory pathway of receivers. Here, we analysed the responses of interneurons in a katydid species that uses long-lasting acoustic trills and compared these with previously reported data for homologous interneurons of a sympatric species that uses short chirps as acoustic signals. Some interneurons of the trilling species respond exclusively to the heterospecific chirp due to selective, low-frequency tuning and "novelty detection". These properties have been considered as evolutionary adaptations in the sensory system of the chirper, which allow it to detect signals effectively during the simultaneous calling of the sympatric sibling species. We propose that these two mechanisms, shared by the interneurons of both species, did not evolve in the chirper to guarantee its ability to detect the chirp under masking conditions. Instead we suggest that chirpers evolved an additional, 2-kHz component in their song and exploited pre-existing neuronal properties for detecting their song under masking noise. The failure of some interneurons to respond to the conspecific song in trillers does not prevent intraspecific communication, as other interneurons respond to the trill.
作为交配前隔离的一种机制,听觉昆虫的分歧且具有物种特异性的鸣叫声必须被接收者的传入听觉通路可靠地处理。在这里,我们分析了一种使用长持续时间的鸣叫声的蟋蟀物种的中间神经元的反应,并将这些反应与先前报道的使用短啁啾作为声学信号的同域物种的同源中间神经元的数据进行了比较。由于选择性的低频调谐和“新奇检测”,鸣叫声物种的一些中间神经元仅对异种啁啾做出反应。这些特性被认为是鸣叫声感官系统的进化适应,使它能够在同域亲缘物种同时鸣叫期间有效地检测信号。我们提出,这两种机制被两种物种的中间神经元共享,并不是为了保证鸣叫声在掩蔽条件下能被检测到而在鸣叫声中进化而来的。相反,我们认为鸣叫声在它们的歌声中进化出了一个额外的 2 kHz 成分,并利用了预先存在的神经元特性来在掩蔽噪声下检测它们的歌声。在鸣叫声中,一些中间神经元对同种鸣叫声没有反应,这并不妨碍种内交流,因为其他中间神经元会对鸣叫声做出反应。