Suppr超能文献

受限几何空间中正构烷烃的结晶特征。

Crystallization features of normal alkanes in confined geometry.

机构信息

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.

出版信息

Acc Chem Res. 2014 Jan 21;47(1):192-201. doi: 10.1021/ar400116c. Epub 2013 Aug 15.

Abstract

How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D) confining environment. We have studied multiple parameters of these microencapsulated n-alkanes, including surface freezing, metastability of the rotator phase, and the phase separation behaviors of n-alkane mixtures using differential scanning calorimetry (DSC), temperature-dependent X-ray diffraction (XRD), and variable-temperature solid-state nuclear magnetic resonance (NMR). Our investigations revealed new direct evidence for the existence of surface freezing in microencapsulated n-alkanes. By examining the differences among chain packing and nucleation kinetics between bulk alkane solid solutions and their microencapsulated counterparts, we also discovered a mechanism responsible for the formation of a new metastable bulk phase. In addition, we found that confinement suppresses lamellar ordering and longitudinal diffusion, which play an important role in stabilizing the binary n-alkane solid solution in microcapsules. Our work also provided new insights into the phase separation of other mixed system, such as waxes, lipids, and polymer blends in confined geometry. These works provide a profound understanding of the relationship between molecular structure and material properties in the context of crystallization and therefore advance our ability to improve applications incorporating polymeric and molecular materials.

摘要

聚合物的结晶方式会极大地影响其热学和力学性能,进而影响这些材料的实际应用。嵌段共聚物、接枝聚合物和聚合物共混物等聚合物材料具有复杂的分子结构。由于聚合物体系中存在多个层次的结构和不同尺寸的域,因此聚合物结晶存在广泛的受限硬环境。受限几何形状与聚合物的相亚稳性和寿命密切相关。这会影响相混溶性、微相分离和结晶行为,并决定聚合物材料的性能以及这些材料的加工难易程度。此外,还需要在聚合物中阐明亚稳状态的尺寸效应。然而,科学家们发现很难提出一个定量公式来描述这些复杂体系中亚稳状态的转变动力学。正构烷烃[CnH2n+2,正烷烃],特别是线性饱和烃,可以为研究聚合物材料、表面活性剂和脂质的复杂结晶行为提供一个明确的模型体系。因此,深入研究正构烷烃在受限环境中的相行为将有助于科学家们理解许多聚合物材料(特别是聚烯烃)的结晶相转变和最终性能。在本综述中,我们深入研究了实验室和其他实验室关于正构烷烃和二元混合物在微胶囊中的受限结晶行为的研究。自 2006 年以来,我们小组开发了一种技术,可用于合成具有可控尺寸和表面多孔形态的近乎单分散的含正构烷烃的微胶囊。我们应用了一种原位聚合方法,使用三聚氰胺-甲醛树脂作为壳材料,非离子表面活性剂作为乳化剂。微胶囊的固体外壳可以提供一个稳定的三维(3-D)受限环境。我们使用差示扫描量热法(DSC)、温度依赖的 X 射线衍射(XRD)和变温固态核磁共振(NMR)研究了这些微封装正构烷烃的多个参数,包括表面冻结、旋转相的亚稳性以及正构烷烃混合物的相分离行为。我们的研究揭示了微封装正构烷烃中表面冻结存在的新的直接证据。通过研究链堆积和成核动力学之间的差异,我们在本体烷烃固体溶液及其微封装对应物之间发现了一种导致新亚稳体相形成的机制。此外,我们发现受限可以抑制层状有序和纵向扩散,这对于稳定微胶囊中的二元正构烷烃固体溶液至关重要。我们的工作还为受限几何形状中其他混合体系(如蜡、脂质和聚合物共混物)的相分离提供了新的见解。这些工作深入了解了结晶过程中分子结构与材料性能之间的关系,从而提高了我们对聚合和分子材料应用的改进能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验