Global Top5 Research Program, Department of Environmental Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Korea.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2013;48(13):1723-31. doi: 10.1080/10934529.2013.815559.
The methane oxidation rate and community structure of a methanotrophic consortium were analyzed to determine the effects of trichloroethylene (TCE) and tetrachloroethylene (PCE) on methane oxidation. The maximum methane oxidation rate (Vmax ) of the consortium was 326.8 μmol·g-dry biomass(-1)·h(-1), and it had a half-saturation constant (Km ) of 143.8 μM. The addition of TCE or PCE resulted in decreased methane oxidation rates, which were decreased from 101.73 to 5.47-24.64 μmol·g-dry biomass(-1)·h(-1) with an increase in the TCE-to-methane ratio, and to 61.95-67.43 μmol·g-dry biomass(-1)·h(-1) with an increase in the PCE-to-methane ratio. TCE and PCE were non-competitive inhibitors for methane oxidation, and their inhibition constants (Ki ) were 33.4 and 132.0 μM, respectively. When the methanotrophic community was analyzed based on pmoA using quantitative real-time PCR (qRT-PCR), the pmoA gene copy numbers were shown to decrease from 7.3 ± 0.7 × 10(8) to 2.1-5.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the TCE-to-methane ratio and to 2.5-7.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the PCE-to-methane ratio. Community analysis by microarray demonstrated that Methylocystis (type II methanotrophs) were the most abundant in the methanotrophic community composition in the presence of TCE. These results suggest that toxic effects caused by TCE and PCE change not only methane oxidation rates but also the community structure of the methanotrophic consortium.
分析了甲烷氧化菌的甲烷氧化速率和群落结构,以确定三氯乙烯(TCE)和四氯乙烯(PCE)对甲烷氧化的影响。该菌的最大甲烷氧化速率(Vmax)为 326.8μmol·g-干生物质·h-1,半饱和常数(Km)为 143.8μM。TCE 或 PCE 的添加导致甲烷氧化速率降低,当 TCE 与甲烷的比例增加时,甲烷氧化速率从 101.73μmol·g-干生物质·h-1降低至 5.47-24.64μmol·g-干生物质·h-1,当 PCE 与甲烷的比例增加时,甲烷氧化速率降低至 61.95-67.43μmol·g-干生物质·h-1。TCE 和 PCE 是非竞争性抑制剂,其抑制常数(Ki)分别为 33.4 和 132.0μM。当根据 pmoA 使用定量实时 PCR(qRT-PCR)分析甲烷氧化菌群落时,发现随着 TCE 与甲烷比例的增加,pmoA 基因拷贝数从 7.3±0.7×10(8)降低至 2.1-5.0×10(7)pmoA 基因拷贝数·g-干生物质-1,当 PCE 与甲烷的比例增加时,pmoA 基因拷贝数降低至 2.5-7.0×10(7)pmoA 基因拷贝数·g-干生物质-1。通过微阵列进行的群落分析表明,在 TCE 存在的情况下,Methylocystis(II 型甲烷氧化菌)是甲烷氧化菌群落组成中最丰富的。这些结果表明,TCE 和 PCE 的毒性作用不仅改变了甲烷氧化速率,还改变了甲烷氧化菌的群落结构。