Suppr超能文献

[铜对混合微生物降解三氯乙烯机制的影响]

[Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

作者信息

Gao Yanhui, Zhao Tiantao, Xing Zhilin, He Zhi, Zhang Lijie, Peng Xuya

机构信息

College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.

College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China.

出版信息

Sheng Wu Gong Cheng Xue Bao. 2016 May 25;32(5):621-634. doi: 10.13345/j.cjb.150375.

Abstract

We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

摘要

我们从添加了三氯乙烯(TCE)的垃圾填埋场覆盖土壤中分离并富集了混合微生物SWA1。该微生物混合物在有氧条件下能有效降解TCE。然后,我们研究了铜离子(0至15μmol/L)对TCE生物降解的影响。结果表明,当铜离子浓度为0.03μmol/L时,TCE的最大降解速度为29.60 nmol/min,降解率为95.75%。此外,通过实时定量逆转录PCR(RT-qPCR)分析了生物降解过程中关键酶的编码基因。当铜离子浓度为0.03μmol/L时,pmoA基因(4.22E-03)和mmoX基因(9.30E-06)的相对表达丰度最高。最后,我们还使用MiSeq焦磷酸测序技术研究了微生物群落的多样性。能够共代谢降解TCE的甲基孢囊菌科是优势微生物;SWA1中还包括其他具有直接氧化TCE功能的微生物,并且随着铜离子浓度的增加,微生物多样性显著降低。基于上述结果,铜离子浓度的变化影响了SWA1的组成和TCE的降解机制。TCE的降解机制包括在0.03μmol/L铜离子条件下甲烷营养菌的共代谢降解和直接氧化代谢。当铜离子浓度为5μmol/L时(生物降解率为84.75%),TCE的降解机制包括甲烷营养菌和含酚羟化酶微生物的直接降解和共代谢降解。因此,微生物对TCE的生物降解是一个复杂的过程,降解机制包括甲烷营养菌的共代谢降解和非甲烷营养菌的生物氧化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验