Suppr超能文献

最佳的底物化学与生理流体切应力的组合。

The optimal combination of substrate chemistry with physiological fluid shear stress.

机构信息

Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400030, China; Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing 400030, China.

出版信息

Colloids Surf B Biointerfaces. 2013 Dec 1;112:51-60. doi: 10.1016/j.colsurfb.2013.07.001. Epub 2013 Jul 25.

Abstract

Osteoblasts on implanted biomaterials sense both substrate chemistry and mechanical stimulus. The effects of substrate chemistry alone and mechanical stimulus alone on osteoblasts have been widely studied. This study investigates the optimal combination of substrate chemistry and 12dyn/cm(2) physiological flow shear stress (FSS) by examining their influences on primary rat osteoblasts (ROBs), including the releases of ATP, nitric oxide (NO), and prostaglandin E2 (PGE2). Self-assembled monolayers (SAMs) on glass slides with -OH, -CH3, and -NH2 were employed to provide various substrate chemistries, whereas a parallel-plate fluid flow system produced the physiological FSS. Substrate chemistry alone exerted no observable effects on the releases of ATP, NO, and PGE2. Nevertheless, when ROBs were exposed to both substrate chemistry and FSS, the ATP releases of NH2 were upregulated about 12-fold compared to substrate chemistry alone, while the ATP releases of CH3 and OH was similarly increased 7-fold at the peak. Similar trends were observed for the releases of NO and PGE2. The expressions of ATP, NO, and PGE2 followed the pattern of NH2-FSS>Glass-FSS>CH3-FSS≈OH-FSS. ROBs on NH2 produced the optimal combination of substrate chemistry with the physiological FSS. The F-actin organization and focal adhesion (FA) formation of ROBs on various SAMs without FSS were examined. NH2 produced the best results whereas CH3 and OH produced the worst ones. Inhibition of FAs and/or disruption of F-actin significantly decreased the releases of FSS-induced PGE2, NO, and/or ATP. Consequently, a mechanism was proposed that the best F-actin organization and FA formation of ROBs on NH2 lead to the optimal combination of substrate chemistry with the 12dyn/cm(2) physiological FSS. This mechanism gives guidance for the design of implanted biomaterials and bioreactors for bone tissue engineering.

摘要

植入生物材料上的成骨细胞既能感知基质化学性质,又能感知机械刺激。单独的基质化学性质和单独的机械刺激对成骨细胞的影响已被广泛研究。本研究通过检测其对原代大鼠成骨细胞(ROB)的影响,包括三磷酸腺苷(ATP)、一氧化氮(NO)和前列腺素 E2(PGE2)的释放,来研究基质化学性质和 12dyn/cm(2)生理流切应力(FSS)的最佳组合。玻璃载玻片上的自组装单分子层(SAM)用于提供各种基质化学性质,而平行板流体流动系统则产生生理 FSS。单独的基质化学性质对 ATP、NO 和 PGE2 的释放没有明显影响。然而,当 ROB 同时暴露于基质化学性质和 FSS 时,NH2 的 ATP 释放量比单独的基质化学性质增加了约 12 倍,而 CH3 和 OH 的 ATP 释放量在峰值时也同样增加了 7 倍。NO 和 PGE2 的释放也出现了类似的趋势。ATP、NO 和 PGE2 的表达模式为 NH2-FSS>Glass-FSS>CH3-FSS≈OH-FSS。ROB 上的 NH2 产生了基质化学性质与生理 FSS 的最佳组合。在没有 FSS 的情况下,检查了各种 SAM 上的 ROB 的 F-肌动蛋白组织和焦点黏附(FA)形成。NH2 的效果最好,而 CH3 和 OH 的效果最差。FA 的抑制和/或 F-肌动蛋白的破坏显著降低了 FSS 诱导的 PGE2、NO 和/或 ATP 的释放。因此,提出了一种机制,即 NH2 上 ROB 的最佳 F-肌动蛋白组织和 FA 形成导致了基质化学性质与 12dyn/cm(2)生理 FSS 的最佳组合。该机制为植入生物材料和用于骨组织工程的生物反应器的设计提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验