Departments of Health Sciences and Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave, Room 403, Boston, MA, 02215, USA,
Neuroinformatics. 2014 Jan;12(1):39-62. doi: 10.1007/s12021-013-9201-6.
A number of heritable disorders impair the normal development of speech and language processes and occur in large numbers within the general population. While candidate genes and loci have been identified, the gap between genotype and phenotype is vast, limiting current understanding of the biology of normal and disordered processes. This gap exists not only in our scientific knowledge, but also in our research communities, where genetics researchers and speech, language, and cognitive scientists tend to operate independently. Here we describe a web-based, domain-specific, curated database that represents information about genotype-phenotype relations specific to speech and language disorders, as well as neuroimaging results demonstrating focal brain differences in relevant patients versus controls. Bringing these two distinct data types into a common database ( http://neurospeech.org/sldb ) is a first step toward bringing molecular level information into cognitive and computational theories of speech and language function. One bridge between these data types is provided by densely sampled profiles of gene expression in the brain, such as those provided by the Allen Brain Atlases. Here we present results from exploratory analyses of human brain gene expression profiles for genes implicated in speech and language disorders, which are annotated in our database. We then discuss how such datasets can be useful in the development of computational models that bridge levels of analysis, necessary to provide a mechanistic understanding of heritable language disorders. We further describe our general approach to information integration, discuss important caveats and considerations, and offer a specific but speculative example based on genes implicated in stuttering and basal ganglia function in speech motor control.
许多遗传性疾病会损害言语和语言过程的正常发育,并且在普通人群中大量发生。虽然已经确定了候选基因和基因座,但基因型与表型之间存在巨大差距,限制了对正常和异常过程生物学的现有理解。这种差距不仅存在于我们的科学知识中,也存在于我们的研究社区中,遗传学家和言语、语言及认知科学家往往各自独立运作。在这里,我们描述了一个基于网络的、特定于言语和语言障碍的、经过精心整理的数据库,该数据库代表了与言语和语言障碍相关的基因型-表型关系的信息,以及神经影像学结果,这些结果显示了相关患者与对照组之间大脑差异的焦点。将这两种截然不同的数据类型纳入一个共同的数据库(http://neurospeech.org/sldb)是将分子水平信息纳入言语和语言功能的认知和计算理论的第一步。这些数据类型之间的一个桥梁是大脑中基因表达的密集采样谱,例如艾伦大脑图集所提供的那些。在这里,我们展示了对我们数据库中注释的与言语和语言障碍相关的基因的人类大脑基因表达谱进行探索性分析的结果。然后,我们讨论了此类数据集如何有助于开发计算模型,这些模型可以在分析层面之间架起桥梁,从而提供对遗传性语言障碍的机制理解。我们进一步描述了我们的信息整合一般方法,讨论了重要的注意事项和考虑因素,并提供了一个具体但推测性的例子,该例子基于与口吃和基底神经节在言语运动控制中的功能相关的基因。