Russo A, Zappia M, Reginelli A, Carfora M, D'Agosto G F, La Porta M, Genovese E A, Fonio P
Department of Radiology, S. G. Moscati Hospital, Aversa, Italy.
Musculoskelet Surg. 2013 Aug;97 Suppl 2:S161-8. doi: 10.1007/s12306-013-0286-8. Epub 2013 Aug 15.
Ankle impingement is defined as entrapment of an anatomic structure that leads to pain and decreased range of motion of the ankle and can be classified as either soft tissue or osseous (Bassett et al. in J Bone Joint Surg Am 72:55-59, 1990). The impingement syndromes of the ankle are a group of painful disorders that limit full range of movement. Symptoms are due to compression of soft-tissues or osseous structures during particular movements (Ogilvie-Harris et al. in Arthroscopy 13:564-574, 1997). Osseous impingement can result from spur formation along the anterior margin of the distal tibia and talus or as a result of a prominent posterolateral talar process, the os trigonum. Soft-tissue impingement usually results from scarring and fibrosis associated with synovial, capsular, or ligamentous injury. Soft-tissue impingement most often occurs in the anterolateral gutter, the medial ankle, or in the region of the syndesmosis (Van den Bekerom and Raven in Knee Surg Sports Traumatol Arthrosc 15:465-471, 2007). The main impingement syndromes are anterolateral, anterior, anteromedial, posterior, and posteromedial impingement. These conditions arise from initial ankle injuries, which, in the subacute or chronic situation, lead to development of abnormal osseous and soft-tissue thickening within the ankle joint. The relative contributions of the osseous and soft-tissue abnormalities are variable, but whatever component is dominant there is physical impingement and painful limitation of ankle movement. Conventional radiography is usually the first imaging technique performer and allows assessment of any potential bone abnormality, particularly in anterior and posterior impingement. Computed tomography (CT) and isotope bone scanning have been largely superseded by magnetic resonance (MR) imaging. MR imaging can demonstrate osseous and soft-tissue edema in anterior or posterior impingement. MR imaging is the most useful imaging modality in evaluating suspected soft-tissue impingement or in excluding other ankle pathology such as an osteochondral lesion of the talus. MR imaging can reveal evidence of previous ligamentous injury and also can demonstrate thickened synovium, fibrosis, or adjacent reactive soft-tissue edema. Studies of conventional MR imaging have produced conflicting sensitivities and specificities in assessment of anterolateral impingement. CT and MR arthrographic techniques allow the most accurate assessment of the capsular recesses, albeit with important limitations in diagnosis of clinical impingement syndromes. In the majority of cases, ankle impingement is treated with conservative measures, with surgical debridement via arthroscopy or an open procedure reserved for patients who have refractory symptoms. In this article, we describe the clinical and potential imaging features, for the four main impingement syndromes of the ankle: anterolateral, anterior, anteromedial, posterior, and posteromedial impingement.
踝关节撞击症被定义为解剖结构的卡压,导致踝关节疼痛和活动范围减小,可分为软组织型或骨型(Bassett等人,《美国骨与关节外科杂志》72:55 - 59,1990年)。踝关节撞击综合征是一组限制全范围运动的疼痛性疾病。症状是由于特定运动过程中软组织或骨结构受到压迫所致(Ogilvie - Harris等人,《关节镜检查》13:564 - 574,1997年)。骨撞击可由胫骨远端和距骨前缘的骨刺形成引起,或因距骨后外侧突出的三角骨所致。软组织撞击通常由与滑膜、关节囊或韧带损伤相关的瘢痕形成和纤维化引起。软组织撞击最常发生在前外侧沟、内踝或下胫腓联合区域(Van den Bekerom和Raven,《膝关节外科、运动创伤与关节镜杂志》15:465 - 471,2007年)。主要的撞击综合征有前外侧、前方、前内侧、后方和后内侧撞击。这些情况源于最初的踝关节损伤,在亚急性或慢性情况下,会导致踝关节内异常的骨和软组织增厚。骨和软组织异常的相对作用各不相同,但无论哪个成分占主导,都会存在物理性撞击和踝关节运动的疼痛性受限。传统X线摄影通常是首先进行的成像技术,可用于评估任何潜在的骨异常,特别是在前侧和后侧撞击中。计算机断层扫描(CT)和同位素骨扫描在很大程度上已被磁共振(MR)成像所取代。MR成像可显示前侧或后侧撞击中的骨和软组织水肿。MR成像是评估疑似软组织撞击或排除其他踝关节病变(如距骨骨软骨损伤)最有用的成像方式。MR成像可揭示先前韧带损伤的证据,还可显示增厚的滑膜、纤维化或相邻的反应性软组织水肿。传统MR成像研究在评估前外侧撞击时产生了相互矛盾的敏感性和特异性。CT和MR关节造影技术能最准确地评估关节囊隐窝,尽管在临床撞击综合征的诊断中存在重要局限性。在大多数情况下,踝关节撞击症采用保守治疗,对于有难治性症状的患者则通过关节镜或开放手术进行手术清创。在本文中,我们描述了踝关节四种主要撞击综合征(前外侧、前方、前内侧、后方和后内侧撞击)的临床和潜在成像特征。