Suppr超能文献

肌动蛋白细胞骨架是拟南芥主根在微重力条件下内源性倾斜行为的抑制因子。

The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity.

作者信息

Nakashima J, Liao F, Sparks J A, Tang Y, Blancaflor E B

机构信息

Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK, USA.

出版信息

Plant Biol (Stuttg). 2014 Jan;16 Suppl 1:142-50. doi: 10.1111/plb.12062. Epub 2013 Aug 16.

Abstract

Before plants can be effectively utilised as a component of enclosed life-support systems for space exploration, it is important to understand the molecular mechanisms by which they develop in microgravity. Using the Biological Research in Canisters (BRIC) hardware on board the second to the last flight of the Space Shuttle Discovery (STS-131 mission), we studied how microgravity impacts root growth in Arabidopsis thaliana. Ground-based studies showed that the actin cytoskeleton negatively regulates root gravity responses on Earth, leading us to hypothesise that actin might also be an important modulator of root growth behaviour in space. We investigated how microgravity impacted root growth of wild type (ecotype Columbia) and a mutant (act2-3) disrupted in a root-expressed vegetative actin isoform (ACTIN2). Roots of etiolated wild-type and act2-3 seedlings grown in space skewed vigorously toward the left, which was unexpected given the reduced directional cue provided by gravity. The left-handed directional root growth in space was more pronounced in act2-3 mutants than wild type. To quantify differences in root orientation of these two genotypes in space, we developed an algorithm where single root images were converted into binary images using computational edge detection methods. Binary images were processed with Fast Fourier Transformation (FFT), and histogram and entropy were used to determine spectral distribution, such that high entropy values corresponded to roots that deviated more strongly from linear orientation whereas low entropy values represented straight roots. We found that act2-3 roots had a statistically stronger skewing/coiling response than wild-type roots, but such differences were not apparent on Earth. Ultrastructural studies revealed that newly developed cell walls of space-grown act2-3 roots were more severely disrupted compared to space-grown wild type, and ground control wild-type and act2-3 roots. Collectively, our results provide evidence that, like root gravity responses on Earth, endogenous directional growth patterns of roots in microgravity are suppressed by the actin cytoskeleton. Modulation of root growth in space by actin could be facilitated in part through its impact on cell wall architecture.

摘要

在植物能够有效地用作太空探索的封闭生命支持系统的组成部分之前,了解它们在微重力环境下生长的分子机制非常重要。利用“发现号”航天飞机(STS - 131任务)倒数第二次飞行搭载的生物研究罐(BRIC)硬件,我们研究了微重力如何影响拟南芥的根生长。地面研究表明,肌动蛋白细胞骨架在地球上对根的重力反应起负调节作用,这使我们推测肌动蛋白可能也是太空环境中根生长行为的重要调节因子。我们研究了微重力如何影响野生型(生态型哥伦比亚)和一个在根中表达的营养肌动蛋白异构体(ACTIN2)被破坏的突变体(act2 - 3)的根生长。在太空中生长的黄化野生型和act2 - 3幼苗的根大力向左倾斜,鉴于重力提供的方向线索减少,这是出乎意料的。在太空中,act2 - 3突变体的左旋定向根生长比野生型更明显。为了量化这两种基因型在太空中根取向的差异,我们开发了一种算法,使用计算边缘检测方法将单根图像转换为二值图像。二值图像用快速傅里叶变换(FFT)进行处理,并使用直方图和熵来确定光谱分布,高熵值对应于偏离线性取向更强的根,而低熵值代表直根。我们发现,act2 - 3根的倾斜/盘绕反应在统计学上比野生型根更强,但这种差异在地球上并不明显。超微结构研究表明,与在太空中生长的野生型以及地面对照野生型和act2 - 3根相比,在太空中生长的act2 - 3根新形成的细胞壁受到的破坏更严重。总体而言,我们的结果表明,与地球上根的重力反应一样,微重力环境下根的内源性定向生长模式受到肌动蛋白细胞骨架的抑制。肌动蛋白对太空中根生长的调节可能部分是通过其对细胞壁结构的影响来实现的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验