Suppr超能文献

非生物相互作用的转化性见解:从拟南芥到农作物

Translational insights into abiotic interactions: From Arabidopsis to crop plants.

作者信息

Roeder Adrienne H K, Shi Yiting, Yang Shuhua, Abbas Mohamad, Sasidharan Rashmi, Yanovsky Marcelo J, Casal Jorge José, Ruffel Sandrine, von Wirén Nicolaus, Assmann Sarah M, Kinscherf Noah A, Bakshi Arkadipta, Alptekin Burcu, Gilroy Simon, SharathKumar Malleshaiah, Prat Salomé, Argueso Cristiana T

机构信息

School of Integrative Plant Science, Section of Plant Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.

State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

出版信息

Plant Cell. 2025 Jul 1;37(7). doi: 10.1093/plcell/koaf140.

Abstract

Understanding crop plants responses to abiotic stress is increasingly important in this changing climate. We asked experts how discoveries in Arabidopsis thaliana have translated into advancements in abiotic crop stress resilience. The theme is that core regulatory networks identified in Arabidopsis are conserved in crops, but the molecular regulation varies among species. For cold tolerance, the regulatory framework is conserved, but MAP Kinase signaling promotes degradation of the INDUCER OF DREB1 EXPRESSION transcription factor in Arabidopsis but inhibits it in rice. For hypoxia, manipulation of the oxygen sensing Arg/N-degron pathway discovered in Arabidopsis has improved waterlogging and flood tolerance in barley, maize, wheat, and soybean. For light signaling, overexpression of PHYTOCHROME B reduces shade avoidance, improving yield under dense planting in potato, soybean, and maize. In rice, understanding of nitrogen responsiveness, uptake, and transport in Arabidopsis has inspired engineering of the NRT1 nitrate transceptor to increase yield. Arabidopsis research has provided leads for genetic manipulations that may improve drought resilience in crop species. Growing plants in space generates a complex array of stresses, and Arabidopsis experiments in the space station prepare for future development of robust crops as integral components of the life support systems. For environmental regulation of flowering time, the role of the GIGANTEA - CONTANS - FLOWERING LOCUS T module elucidated in Arabidopsis is largely conserved in crop plants, although additional regulators modify short-day responsiveness in rice, soybean, chrysanthemum, and potato.

摘要

在气候变化的背景下,了解作物对非生物胁迫的反应变得越来越重要。我们询问了专家拟南芥中的发现是如何转化为提高作物非生物胁迫恢复力的进展的。其主题是,在拟南芥中确定的核心调控网络在作物中是保守的,但分子调控在不同物种之间存在差异。对于耐寒性,调控框架是保守的,但丝裂原活化蛋白激酶信号传导在拟南芥中促进DREB1表达诱导因子转录因子的降解,而在水稻中则抑制它。对于缺氧,对拟南芥中发现的氧感应精氨酸/N-末端降解途径的操纵提高了大麦、玉米、小麦和大豆的耐涝性和耐洪性。对于光信号传导,光敏色素B的过表达减少了避荫现象,提高了马铃薯、大豆和玉米密植条件下的产量。在水稻中,对拟南芥中氮响应、吸收和运输的了解激发了对NRT1硝酸盐转运体的工程改造以提高产量。拟南芥研究为可能提高作物物种抗旱性的基因操作提供了线索。在太空种植植物会产生一系列复杂的胁迫,而在空间站进行的拟南芥实验为未来培育作为生命支持系统不可或缺组成部分的强健作物做准备。对于开花时间的环境调控,拟南芥中阐明的巨大蛋白 - CONSTANS - 成花素基因座T模块的作用在作物中基本保守,尽管其他调节因子会改变水稻、大豆、菊花和马铃薯的短日响应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bde/12292048/e9059b6955ad/koaf140f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验