Key Laboratory of Green Chemistry and Technology, College of Chemistry, Ministry of Education, Chengdu, Sichuan 610064, PR China.
J Phys Chem B. 2013 Sep 5;117(35):10080-92. doi: 10.1021/jp402110j. Epub 2013 Aug 26.
Bifidobacterium is a genus of Gram-positive bacteria, which is important in the absorption of nourishment from the human milk oligosaccharides (HMO). We present here the detailed simulation of the enzymatic hydrolysis of 2'-fucosyllactose catalyzed by 1,2-α-L-fucosidase from Bifidobacterium bifidum using the combined quantum mechanical and molecular mechanical approach. Molecular dynamics simulations and free energy profiles support that the overall reaction is a stepwise mechanism. The first step is the proton transfer from N423 to D766, and the second step involves the hydrolysis reaction via the inversion mechanism catalyzed by the amide group of N423. Assisted by D766, N423 serves as the general base to activate the water molecule to attack the anomeric carbon center. E566 is the general acid to facilitate the cleavage of glycosidic bond between L-fucose and galactose units. The intrinsic resonance structure for the side chain amide group of the asparagine residue is shown to be the origin to the catalytic activity, which is also confirmed by the mutagenesis simulation of N423G.
双歧杆菌是革兰氏阳性菌的一个属,它在人体乳寡糖(HMO)的营养吸收中起着重要作用。我们在这里介绍了使用量子力学和分子力学相结合的方法,对双歧双歧杆菌 1,2-α-L-岩藻糖苷酶催化 2'-岩藻糖基乳糖的酶解反应的详细模拟。分子动力学模拟和自由能曲线支持整个反应是逐步进行的机制。第一步是从 N423 到 D766 的质子转移,第二步是通过 N423 酰胺基团催化的反转机制进行水解反应。在 D766 的辅助下,N423 作为广义碱激活水分子攻击糖苷键的异头碳原子中心。E566 是广义酸,有助于促进 L-岩藻糖和半乳糖单位之间糖苷键的断裂。天门冬酰胺残基侧链酰胺基团的固有共振结构被证明是催化活性的起源,这也通过 N423G 的突变模拟得到了证实。