Suppr超能文献

鉴定 tRNA 修饰中的新型 5-氨基甲基-2-硫尿嘧啶甲基转移酶。

Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification.

机构信息

Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.

出版信息

Nucleic Acids Res. 2023 Feb 28;51(4):1971-1983. doi: 10.1093/nar/gkad048.

Abstract

The uridine at the 34th position of tRNA, which is able to base pair with the 3'-end codon on mRNA, is usually modified to influence many aspects of decoding properties during translation. Derivatives of 5-methyluridine (xm5U), which include methylaminomethyl (mnm-) or carboxymethylaminomethyl (cmnm-) groups at C5 of uracil base, are widely conserved at the 34th position of many prokaryotic tRNAs. In Gram-negative bacteria such as Escherichia coli, a bifunctional MnmC is involved in the last two reactions of the biosynthesis of mnm5(s2)U, in which the enzyme first converts cmnm5(s2)U to 5-aminomethyl-(2-thio)uridine (nm5(s2)U) and subsequently installs the methyl group to complete the formation of mnm5(s2)U. Although mnm5s2U has been identified in tRNAs of Gram-positive bacteria and plants as well, their genomes do not contain an mnmC ortholog and the gene(s) responsible for this modification is unknown. We discovered that MnmM, previously known as YtqB, is the methyltransferase that converts nm5s2U to mnm5s2U in Bacillus subtilis through comparative genomics, gene complementation experiments, and in vitro assays. Furthermore, we determined X-ray crystal structures of MnmM complexed with anticodon stem loop of tRNAGln. The structures provide the molecular basis underlying the importance of U33-nm5s2U34-U35 as the key determinant for the specificity of MnmM.

摘要

tRNA 第 34 位的尿嘧啶能够与 mRNA 的 3'-末端密码子配对,通常会被修饰以影响翻译过程中解码特性的多个方面。5-甲基尿嘧啶(xm5U)的衍生物,包括在尿嘧啶碱基的 C5 上带有甲基氨基甲酰基(mnm-)或羧甲基氨基甲酰基(cmnm-)基团的衍生物,在许多原核 tRNA 的第 34 位广泛保守。在革兰氏阴性菌如大肠杆菌中,双功能 MnmC 参与 mnm5(s2)U 生物合成的后两个反应,其中该酶首先将 cmnm5(s2)U 转化为 5-氨基甲基-(2-硫)尿嘧啶(nm5(s2)U),然后安装甲基以完成 mnm5(s2)U 的形成。尽管 mnm5s2U 也在革兰氏阳性菌和植物的 tRNA 中被鉴定出来,但它们的基因组不包含 mnmC 直系同源物,负责这种修饰的基因尚不清楚。我们通过比较基因组学、基因互补实验和体外测定发现,MnmM(以前称为 YtqB)是一种甲基转移酶,可将 nm5s2U 转化为枯草芽孢杆菌中的 mnm5s2U。此外,我们确定了 MnmM 与 tRNAGln 反密码子茎环复合物的 X 射线晶体结构。这些结构提供了分子基础,说明了 U33-nm5s2U34-U35 作为 MnmM 特异性关键决定因素的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b570/9976899/03db53c0ec86/gkad048figgra1.jpg

相似文献

1
Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification.
Nucleic Acids Res. 2023 Feb 28;51(4):1971-1983. doi: 10.1093/nar/gkad048.
6
Crystal structure of the bifunctional tRNA modification enzyme MnmC from Escherichia coli.
Protein Sci. 2011 Jul;20(7):1105-13. doi: 10.1002/pro.659. Epub 2011 Jun 2.
7
Alternate routes to mnmsU synthesis in Gram-positive bacteria.
J Bacteriol. 2024 Apr 18;206(4):e0045223. doi: 10.1128/jb.00452-23. Epub 2024 Mar 29.
8
Bacillus subtilis exhibits MnmC-like tRNA modification activities.
RNA Biol. 2018;15(9):1167-1173. doi: 10.1080/15476286.2018.1517012. Epub 2018 Sep 24.
10
Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position.
J Mol Biol. 2013 Oct 23;425(20):3888-906. doi: 10.1016/j.jmb.2013.05.018. Epub 2013 May 28.

引用本文的文献

1
tRNA modifying enzymes MnmE and MnmG are essential for apicoplast maintenance.
bioRxiv. 2025 Jan 6:2024.12.21.629855. doi: 10.1101/2024.12.21.629855.
2
RudS: bacterial desulfidase responsible for tRNA 4-thiouridine de-modification.
Nucleic Acids Res. 2024 Sep 23;52(17):10543-10562. doi: 10.1093/nar/gkae716.
3
Alternate routes to mnmsU synthesis in Gram-positive bacteria.
J Bacteriol. 2024 Apr 18;206(4):e0045223. doi: 10.1128/jb.00452-23. Epub 2024 Mar 29.
4
A tRNA modification in facilitates optimal intracellular growth.
Elife. 2023 Sep 27;12:RP87146. doi: 10.7554/eLife.87146.
5
A tRNA modification in facilitates optimal intracellular growth.
bioRxiv. 2023 Jun 9:2023.02.20.529267. doi: 10.1101/2023.02.20.529267.

本文引用的文献

1
ModelCraft: an advanced automated model-building pipeline using Buccaneer.
Acta Crystallogr D Struct Biol. 2022 Sep 1;78(Pt 9):1090-1098. doi: 10.1107/S2059798322007732. Epub 2022 Aug 25.
2
Data-Independent Acquisition for the Detection of Mononucleoside RNA Modifications by Mass Spectrometry.
J Am Soc Mass Spectrom. 2022 May 4;33(5):885-893. doi: 10.1021/jasms.2c00065. Epub 2022 Mar 31.
3
MODOMICS: a database of RNA modification pathways. 2021 update.
Nucleic Acids Res. 2022 Jan 7;50(D1):D231-D235. doi: 10.1093/nar/gkab1083.
4
QM/MM Simulations of Enzymatic Hydrolysis of Cellulose: Probing the Viability of an Endocyclic Mechanism for an Inverting Cellulase.
J Chem Inf Model. 2021 Apr 26;61(4):1902-1912. doi: 10.1021/acs.jcim.0c01380. Epub 2021 Mar 24.
5
The expanding world of tRNA modifications and their disease relevance.
Nat Rev Mol Cell Biol. 2021 Jun;22(6):375-392. doi: 10.1038/s41580-021-00342-0. Epub 2021 Mar 3.
6
UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
7
COG database update: focus on microbial diversity, model organisms, and widespread pathogens.
Nucleic Acids Res. 2021 Jan 8;49(D1):D274-D281. doi: 10.1093/nar/gkaa1018.
8
Chemical Amination/Imination of Carbonothiolated Nucleosides During RNA Hydrolysis.
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):3961-3966. doi: 10.1002/anie.202010793. Epub 2020 Dec 10.
9
The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities.
Nucleic Acids Res. 2021 Jan 8;49(D1):D751-D763. doi: 10.1093/nar/gkaa939.
10
Extracurricular Functions of tRNA Modifications in Microorganisms.
Genes (Basel). 2020 Aug 7;11(8):907. doi: 10.3390/genes11080907.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验