Department of Chemistry, University College Cork, Cork, Ireland.
ACS Appl Mater Interfaces. 2013 Aug 28;5(16):8195-202. doi: 10.1021/am4023169. Epub 2013 Aug 16.
Tin oxide (SnO2) is considered a very promising material as a high capacity Li-ion battery anode. Its adoption depends on a solid understanding of factors that affect electrochemical behavior and performance such as size and composition. We demonstrate here, that defined dispersions and structures can improve our understanding of Li-ion battery anode material architecture on alloying and co-intercalation processes of Lithium with Sn from SnO2 on Si. Two different types of well-defined hierarchical Sn@SnO2 core-shell nanoparticle (NP) dispersions were prepared by molecular beam epitaxy (MBE) on silicon, composed of either amorphous or polycrystalline SnO2 shells. In2O3 and Sn doped In2O3 (ITO) NP dispersions are also demonstrated from MBE NP growth. Lithium alloying with the reduced form of the NPs and co-insertion into the silicon substrate showed reversible charge storage. Through correlation of electrochemical and structural characteristics of the anodes, we detail the link between the composition, areal and volumetric densities, and the effect of electrochemical alloying of Lithium with Sn@SnO2 and related NPs on their structure and, importantly, their dispersion on the electrode. The dispersion also dictates the degree of co-insertion into the Si current collector, which can act as a buffer. The compositional and structural engineering of SnO2 and related materials using highly defined MBE growth as model system allows a detailed examination of the influence of material dispersion or nanoarchitecture on the electrochemical performance of active electrodes and materials.
氧化锡(SnO2)被认为是一种很有前途的高容量锂离子电池阳极材料。其应用取决于对影响电化学行为和性能的因素(如尺寸和组成)的深入了解。我们在这里证明,通过定义的分散体和结构,可以改善我们对锂离子电池阳极材料结构的理解,即锂离子与 Sn 的合金化和共嵌入过程,Sn 来自 Si 上的 SnO2。通过分子束外延(MBE)在硅上制备了两种不同类型的具有明确结构的分级 Sn@SnO2 核壳纳米颗粒(NP)分散体,分别由非晶或多晶 SnO2 壳组成。还展示了通过 MBE NP 生长制备的 In2O3 和 Sn 掺杂 In2O3(ITO)NP 分散体。还原态 NPs 的锂离子合金化和共插入硅基底中显示出可逆的电荷存储。通过对阳极的电化学和结构特性进行关联,我们详细描述了组成、面密度和体密度之间的联系,以及锂离子与 Sn@SnO2 和相关 NPs 的电化学合金化对其结构的影响,重要的是,它们在电极上的分散性。分散性还决定了共插入 Si 集流器的程度,集流器可以作为缓冲剂。使用高度定义的 MBE 生长作为模型系统对 SnO2 和相关材料的组成和结构工程进行设计,可以详细研究材料分散或纳米结构对活性电极和材料电化学性能的影响。