Medical Radiation Physics, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden, RaySearch Laboratories, Stockholm, Sweden.
Int J Radiat Oncol Biol Phys. 2013 Nov 15;87(4):795-801. doi: 10.1016/j.ijrobp.2013.06.2040. Epub 2013 Aug 14.
To apply a statistical bootstrap analysis to assess the uncertainty in the dose-response relation for the endpoints pneumonitis and myelopathy reported in the QUANTEC review.
The bootstrap method assesses the uncertainty of the estimated population-based dose-response relation due to sample variability, which reflects the uncertainty due to limited numbers of patients in the studies. A large number of bootstrap replicates of the original incidence data were produced by random sampling with replacement. The analysis requires only the dose, the number of patients, and the number of occurrences of the studied endpoint, for each study. Two dose-response models, a Poisson-based model and the Lyman model, were fitted to each bootstrap replicate using maximum likelihood.
The bootstrap analysis generates a family of curves representing the range of plausible dose-response relations, and the 95% bootstrap confidence intervals give an estimated upper and lower toxicity risk. The curve families for the 2 dose-response models overlap for doses included in the studies at hand but diverge beyond that, with the Lyman model suggesting a steeper slope. The resulting distributions of the model parameters indicate correlation and non-Gaussian distribution. For both data sets, the likelihood of the observed data was higher for the Lyman model in >90% of the bootstrap replicates.
The bootstrap method provides a statistical analysis of the uncertainty in the estimated dose-response relation for myelopathy and pneumonitis. It suggests likely values of model parameter values, their confidence intervals, and how they interrelate for each model. Finally, it can be used to evaluate to what extent data supports one model over another. For both data sets considered here, the Lyman model was preferred over the Poisson-based model.
应用统计 bootstrap 分析评估 QUANTEC 综述中报告的肺炎和脊髓病结局的剂量-反应关系估计中的不确定性。
bootstrap 方法评估了由于样本变异性导致的基于人群的剂量-反应关系的不确定性,这反映了研究中患者数量有限所带来的不确定性。通过随机有放回抽样生成了大量原始发病率数据的 bootstrap 复制。该分析仅需要每个研究的剂量、患者数量和研究终点的发生次数。使用最大似然法,对每个 bootstrap 复制拟合了两种剂量-反应模型,即基于泊松的模型和 Lyman 模型。
bootstrap 分析生成了一组代表可能的剂量-反应关系范围的曲线,95%的 bootstrap 置信区间给出了估计的毒性风险上限和下限。对于手头研究中包含的剂量,两种剂量-反应模型的曲线家族重叠,但超出该范围后则会发散,Lyman 模型表明斜率更陡。模型参数的分布表明存在相关性和非正态分布。对于这两个数据集,在 >90%的 bootstrap 复制中,Lyman 模型对观察数据的似然度更高。
bootstrap 方法提供了对脊髓病和肺炎的估计剂量-反应关系的不确定性的统计分析。它为每个模型提供了模型参数值的可能值、置信区间以及它们如何相互关联的信息。最后,它可用于评估数据在多大程度上支持一个模型而不是另一个模型。对于这里考虑的两个数据集,Lyman 模型均优于基于泊松的模型。