Computational and Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Structure. 2013 Sep 3;21(9):1636-47. doi: 10.1016/j.str.2013.07.005. Epub 2013 Aug 15.
Two-component signal transduction systems typically involve a sensor histidine kinase that specifically phosphorylates a single, cognate response regulator. This protein-protein interaction relies on molecular recognition via a small set of residues in each protein. To better understand how these residues determine the specificity of kinase-substrate interactions, we rationally rewired the interaction interface of a Thermotoga maritima two-component system, HK853-RR468, to match that found in a different two-component system, Escherichia coli PhoR-PhoB. The rewired proteins interacted robustly with each other, but no longer interacted with the parent proteins. Analysis of the crystal structures of the wild-type and mutant protein complexes and a systematic mutagenesis study reveal how individual mutations contribute to the rewiring of interaction specificity. Our approach and conclusions have implications for studies of other protein-protein interactions and protein evolution and for the design of novel protein interfaces.
双组分信号转导系统通常涉及一种传感器组氨酸激酶,该激酶特异性地磷酸化单个同源的反应调节剂。这种蛋白质-蛋白质相互作用依赖于每个蛋白质中一小部分残基的分子识别。为了更好地理解这些残基如何决定激酶-底物相互作用的特异性,我们对一种来自海洋栖热菌的双组分系统 HK853-RR468 的相互作用界面进行了合理的重新布线,使其与另一种双组分系统大肠杆菌 PhoR-PhoB 的相互作用界面相匹配。重新布线的蛋白质彼此之间相互作用强烈,但不再与亲本蛋白质相互作用。对野生型和突变蛋白复合物的晶体结构分析和系统的突变研究揭示了单个突变如何导致相互作用特异性的重新布线。我们的方法和结论对其他蛋白质-蛋白质相互作用和蛋白质进化的研究以及新型蛋白质界面的设计具有重要意义。