Suppr超能文献

评估双泊松广义线性模型。

Evaluating the double Poisson generalized linear model.

机构信息

School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, United States.

出版信息

Accid Anal Prev. 2013 Oct;59:497-505. doi: 10.1016/j.aap.2013.07.017. Epub 2013 Jul 21.

Abstract

The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been investigated and applied since its first introduction two decades ago. The hurdle for applying the DP is related to its normalizing constant (or multiplicative constant) which is not available in closed form. This study proposed a new method to approximate the normalizing constant of the DP with high accuracy and reliability. The DP GLM and COM-Poisson GLM were developed using two observed over-dispersed datasets and one observed under-dispersed dataset. The modeling results indicate that the DP GLM with its normalizing constant approximated by the new method can handle crash data characterized by over- and under-dispersion. Its performance is comparable to the COM-Poisson GLM in terms of goodness-of-fit (GOF), although COM-Poisson GLM provides a slightly better fit. For the over-dispersed data, the DP GLM performs similar to the NB GLM. Considering the fact that the DP GLM can be easily estimated with inexpensive computation and that it is simpler to interpret coefficients, it offers a flexible and efficient alternative for researchers to model count data.

摘要

本研究旨在

(1) 检验双泊松 (DP) 广义线性模型 (GLM) 在分析具有过离散和欠离散特征的机动车碰撞数据中的适用性;(2) 从拟合优度和理论合理性方面,比较 DP GLM 和 Conway-Maxwell-Poisson (COM-Poisson) GLM 的性能。自二十年前首次引入 DP 分布以来,它的应用研究一直很少。应用 DP 的障碍与它的归一化常数(或乘法常数)有关,该常数无法以封闭形式获得。本研究提出了一种新方法,以高精度和可靠性来近似 DP 的归一化常数。使用两个观察到的过离散数据集和一个观察到的欠离散数据集,开发了 DP GLM 和 COM-Poisson GLM。建模结果表明,使用新方法近似 DP GLM 的归一化常数,可以处理具有过离散和欠离散特征的碰撞数据。其拟合优度(GOF)与 COM-Poisson GLM 相当,尽管 COM-Poisson GLM 的拟合稍好一些。对于过离散数据,DP GLM 的表现与 NB GLM 相似。考虑到 DP GLM 可以通过廉价的计算轻松估计,并且系数更容易解释,它为研究人员提供了一种灵活高效的替代方法来对计数数据进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验