Department of Engineering Management and Systems Engineering, George Washington University, Washington, DC, USA.
Risk Anal. 2012 Jan;32(1):167-83. doi: 10.1111/j.1539-6924.2011.01659.x. Epub 2011 Jul 30.
Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression.
计数数据在风险分析的许多领域都很普遍;例如,死亡、不良健康结果、基础设施系统故障和交通事故都被记录为计数事件。风险分析师通常希望估计离散事件数量的概率分布,作为风险评估的一部分。用于解决此问题的风险评估中常用的传统计数数据回归模型由于假设的方差结构而存在局限性。最近提出了一种基于 Conway-Maxwell Poisson (COM-Poisson) 分布的更灵活的模型,该模型有可能克服传统模型的局限性。然而,该新模型的统计性能尚未得到充分描述。本文评估了拟合 COM-Poisson 广义线性模型 (GLM) 的最大似然估计方法的性能。本文的目的是 (1) 描述 COM-Poisson GLM 的 MLE 实现的参数估计精度,以及 (2) 使用模拟数据集估计 COM-Poisson GLM 的预测精度。研究结果表明,COM-Poisson GLM 足够灵活,可以对具有不同样本平均值的欠分布、等分布和过分布数据集进行建模。结果还表明,COM-Poisson GLM 产生了准确的参数估计。COM-Poisson GLM 为进行计数数据回归提供了一种有前途且灵活的方法。