Physiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, Univ. of California, San Diego, La Jolla, CA, United States.
Nat Cell Biol. 2013 Sep;15(9):1079-1088. doi: 10.1038/ncb2831. Epub 2013 Aug 18.
During vertebrate mitosis, the centromere-associated kinesin CENP-E (centromere protein E) transports misaligned chromosomes to the plus ends of spindle microtubules. Subsequently, the kinetochores that form at the centromeres establish stable associations with microtubule ends, which assemble and disassemble dynamically. Here we provide evidence that after chromosomes have congressed and bi-oriented, the CENP-E motor continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends. Using a combination of single-molecule approaches and laser trapping in vitro, we demonstrate that once reaching microtubule ends, CENP-E converts from a lateral transporter into a microtubule tip-tracker that maintains association with both assembling and disassembling microtubule tips. Computational modelling of this behaviour supports our proposal that CENP-E tip-tracks bi-directionally through a tethered motor mechanism, which relies on both the motor and tail domains of CENP-E. Our results provide a molecular framework for the contribution of CENP-E to the stability of attachments between kinetochores and dynamic microtubule ends.
在脊椎动物有丝分裂过程中,着丝粒相关的驱动蛋白 CENP-E(着丝粒蛋白 E)将未对齐的染色体运输到纺锤体微管的正极末端。随后,在着丝粒处形成的动粒与微管末端建立稳定的联系,这些联系动态组装和解组装。在这里,我们提供的证据表明,在染色体聚集和双定向后,CENP-E 马达继续在动粒上发挥积极作用,增强它们与动态微管末端的联系。我们使用单分子方法和体外激光捕获的组合,证明一旦到达微管末端,CENP-E 就会从横向转运蛋白转变为微管尖端追踪器,与组装和拆卸的微管尖端保持关联。对这种行为的计算建模支持了我们的假设,即 CENP-E 通过一种受束缚的马达机制进行双向尖端追踪,该机制依赖于 CENP-E 的马达和尾巴结构域。我们的研究结果为 CENP-E 对动粒与动态微管末端之间的连接稳定性的贡献提供了一个分子框架。