Kip3/驱动蛋白-8 对微管动力学的双重调节模式的作用机制。

Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8.

机构信息

Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Mol Cell. 2011 Sep 2;43(5):751-63. doi: 10.1016/j.molcel.2011.06.027.

Abstract

The kinesin-8 family of microtubule motors plays a critical role in microtubule length control in cells. These motors have complex effects on microtubule dynamics: they destabilize growing microtubules yet stabilize shrinking microtubules. The budding yeast kinesin-8, Kip3, accumulates on plus ends of growing but not shrinking microtubules. Here we identify an essential role of the tail domain of Kip3 in mediating both its destabilizing and its stabilizing activities. The Kip3 tail promotes Kip3's accumulation at the plus ends and facilitates the destabilizing effect of Kip3. However, the Kip3 tail also inhibits microtubule shrinkage and is required for promoting microtubule rescue by Kip3. These effects of the tail domain are likely to be mediated by the tubulin- and microtubule-binding activities that we describe. We propose a concentration-dependent model for the coordination of the destabilizing and stabilizing activities of Kip3 and discuss its relevance to cellular microtubule organization.

摘要

驱动蛋白-8 家族的微管马达在细胞内微管长度控制中起着关键作用。这些马达对微管动力学有复杂的影响:它们使生长中的微管不稳定,但稳定收缩中的微管。芽殖酵母的驱动蛋白-8,Kip3,在生长中的微管的正极积累,但不在收缩中的微管积累。在这里,我们确定了 Kip3 的尾部结构域在介导其不稳定和稳定活性方面的重要作用。Kip3 的尾部促进 Kip3 在正极的积累,并促进 Kip3 的不稳定作用。然而,Kip3 的尾部也抑制微管收缩,并促进 Kip3 促进微管的恢复。我们描述的这些尾部结构域的作用可能是由微管蛋白和微管结合活性介导的。我们提出了一个浓度依赖的模型,用于协调 Kip3 的不稳定和稳定活性,并讨论了其与细胞微管组织的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索