Suppr超能文献

一种基于支持向量机的造影细节图像自动评估新方法及其对非线性图像处理的鲁棒性。

A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

作者信息

Takei Takaaki, Ikeda Mitsuru, Imai Kuniharu, Yamauchi-Kawaura Chiyo, Kato Katsuhiko, Isoda Haruo

机构信息

Tosei General Hospital, 160 Nishioiwake-cho, Seto 489-8642, Japan.

出版信息

Australas Phys Eng Sci Med. 2013 Sep;36(3):313-22. doi: 10.1007/s13246-013-0215-z. Epub 2013 Aug 17.

Abstract

The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

摘要

到目前为止开发的自动对比度细节(C-D)分析方法预计在使用非线性方法(如降噪方法)处理的图像上效果不佳。因此,我们通过应用支持向量机(SVM)设计了一种新的自动C-D分析方法,并测试了其对非线性图像处理的鲁棒性。我们在管电压120 kV和毫安秒乘积(mAs)为0.5 - 5.0的条件下获取了CDRAD(一种商用C-D测试物体)图像。基于偏微分方程的技术被用作降噪方法。三名放射科医生和三名大学生参与了观察者性能研究。我们SVM方法的训练数据是由一名放射科医生对在1.6和3.2 mAs下获取的CDRAD图像及其降噪图像评分的分类数据。我们还将我们SVM方法的性能与CDRAD分析仪算法进行了比较。从我们设计的SVM方法获得的平均C-D图(即最小可见孔直径的平均值与孔深度的关系图)与六名人类观察者对原始和降噪CDRAD图像的平均值非常吻合,而CDRAD分析仪算法的平均C-D图与人类观察者对原始和降噪CDRAD图像的平均值不一致。总之,我们提出的用于C-D分析的SVM方法对于用非线性降噪方法处理的图像以及原始射线图像都能很好地工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验