Suppr超能文献

内源性产生的乳酸对树突状细胞的重编程。

Dendritic cell reprogramming by endogenously produced lactic acid.

机构信息

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden.

出版信息

J Immunol. 2013 Sep 15;191(6):3090-9. doi: 10.4049/jimmunol.1300772. Epub 2013 Aug 16.

Abstract

The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.

摘要

通过树突状细胞 (DC) 疫苗控制 T 细胞反应的需求引发了对可靠且可行的 DC 调节策略的探索,这些策略将有助于针对肿瘤的细胞毒性或自身免疫中的耐受性。我们研究了在单核细胞衍生的树突状细胞 (MoDC) 分化过程中诱导炎症或抑制程序的内源性机制,并确定了一种强大的自分泌途径,该途径以细胞浓度依赖性方式强烈干扰炎症性 DC 分化。在低细胞培养密度下发育的 MoDC 具有更强的产生炎症细胞因子的能力、诱导 Th1 极化的能力以及向淋巴组织趋化因子 CCL19 迁移的能力。相反,来自高密度培养的 MoDC 在激活时产生 IL-10 但不产生炎症细胞因子。来自高密度培养的 DC 保持更多的分化可塑性,并可分化为破骨细胞。该细胞浓度依赖性途径与过氧化物酶体增殖物激活受体 γ (PPARγ) 无关,后者是 MoDC 分化的已知内源性调节剂。相反,它通过在高密度培养物中积累的乳酸起作用,并诱导 MoDC 分化的早期和持久的重编程。我们的研究结果表明,可以在发育中的 MoDC 中有效地操纵乳酸介导的抑制途径,以影响 DC 疫苗的免疫原性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验