Mann Paul A, Müller Anna, Xiao Li, Pereira Pedro M, Yang Christine, Ho Lee Sang, Wang Hao, Trzeciak Joanna, Schneeweis Jonathan, Dos Santos Margarida Moreira, Murgolo Nicholas, She Xinwei, Gill Charles, Balibar Carl J, Labroli Marc, Su Jing, Flattery Amy, Sherborne Brad, Maier Richard, Tan Christopher M, Black Todd, Onder Kamil, Kargman Stacia, Monsma Frederick J, Pinho Mariana G, Schneider Tanja, Roemer Terry
Infectious Disease Research, Merck Research Laboratories , Kenilworth, New Jersey 07033, United States.
ACS Chem Biol. 2013 Nov 15;8(11):2442-51. doi: 10.1021/cb400487f. Epub 2013 Sep 5.
Modern medicine is founded on the discovery of penicillin and subsequent small molecules that inhibit bacterial peptidoglycan (PG) and cell wall synthesis. However, the discovery of new chemically and mechanistically distinct classes of PG inhibitors has become exceedingly rare, prompting speculation that intracellular enzymes involved in PG precursor synthesis are not 'druggable' targets. Here, we describe a β-lactam potentiation screen to identify small molecules that augment the activity of β-lactams against methicillin-resistant Staphylococcus aureus (MRSA) and mechanistically characterize a compound resulting from this screen, which we have named murgocil. We provide extensive genetic, biochemical, and structural modeling data demonstrating both in vitro and in whole cells that murgocil specifically inhibits the intracellular membrane-associated glycosyltransferase, MurG, which synthesizes the lipid II PG substrate that penicillin binding proteins (PBPs) polymerize and cross-link into the cell wall. Further, we demonstrate that the chemical synergy and cidality achieved between murgocil and the β-lactam imipenem is mediated through MurG dependent localization of PBP2 to the division septum. Collectively, these data validate our approach to rationally identify new target-specific bioactive β-lactam potentiation agents and demonstrate that murgocil now serves as a highly selective and potent chemical probe to assist our understanding of PG biosynthesis and cell wall biogenesis across Staphylococcal species.
现代医学建立在青霉素及随后发现的抑制细菌肽聚糖(PG)和细胞壁合成的小分子的基础之上。然而,新的化学结构和作用机制不同的PG抑制剂的发现已极为罕见,这引发了一种推测,即参与PG前体合成的细胞内酶不是“可成药”的靶点。在此,我们描述了一种β-内酰胺增强筛选方法,以鉴定能增强β-内酰胺对耐甲氧西林金黄色葡萄球菌(MRSA)活性的小分子,并从机制上对该筛选得到的一种化合物进行表征,我们将其命名为murgocil。我们提供了广泛的遗传学、生物化学和结构建模数据,在体外和完整细胞中均证明,murgocil特异性抑制细胞内膜相关糖基转移酶MurG,该酶合成脂质II PG底物,青霉素结合蛋白(PBPs)将其聚合并交联到细胞壁中。此外,我们证明,murgocil与β-内酰胺亚胺培南之间实现的化学协同作用和杀菌作用是通过MurG依赖的PBP2定位于分裂隔膜介导的。总体而言,这些数据验证了我们合理鉴定新的靶点特异性生物活性β-内酰胺增强剂的方法,并证明murgocil现在是一种高度选择性和强效的化学探针,有助于我们理解葡萄球菌属物种的PG生物合成和细胞壁生物发生。