Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA.
Langmuir. 2013 Sep 3;29(35):11169-75. doi: 10.1021/la402496z. Epub 2013 Aug 19.
The electrochemical generation of individual H(2) nanobubbles at Pt nanodisk electrodes immersed in a 0.5 M H(2)SO(4) solution is reported. A sudden drop in current associated with the transport-limited reduction of protons is observed in the i–V response at Pt nanodisk electrodes with radii of less than 50 nm. This decrease in current (~95% blockage) corresponds to the formation of a single H(2) nanobubble attached to the nanoelectrode that blocks proton transport to the surface. The current at which nanobubble formation occurs, i(nb)(p), is independent of scan rate and H(2)SO(4) concentration (for [H(2)SO(4)] > 0.1 M), indicating a critical concentration profile of electrogenerated H(2) required to nucleate a nanobubble. Finite element simulation based on Fick’s first law, combined with the Young–Laplace equation and Henry’s law, indicates that the concentration of H(2) near the nanoelectrode surface at i(nb)(p) exceeds the saturation concentration necessary to generate a nanobubble with a size comparable to the electrode size. The rapid dissolution of the nanobubble due to the high inner Laplace pressure is precisely balanced by the electrogeneration of H(2) at the partially exposed Pt surface, resulting in a dynamically stabilized nanobubble. Preliminary measurements of the i–t response during nanobubble formation indicate a two-step nucleation and growth mechanism with time scales on the order of 100 μs (or less) and ~1 ms, respectively.
报道了在浸入 0.5 M H2SO4 溶液的 Pt 纳米盘电极中,单个 H2 纳米气泡的电化学生成。在 Pt 纳米盘电极的 i-V 响应中,观察到电流的突然下降,这与小于 50nm 的半径的质子传输限制还原有关。这种电流下降(95%的阻塞)对应于附着在纳米电极上的单个 H2 纳米气泡的形成,该纳米气泡阻塞质子向表面的传输。形成纳米气泡的电流,i(nb)(p),与扫描速率和 H2SO4 浓度无关(对于[H2SO4]>0.1 M),这表明需要形成纳米气泡的电生成 H2 的临界浓度分布。基于菲克第一定律的有限元模拟,结合 Young-Laplace 方程和 Henry 定律,表明在 i(nb)(p)处的纳米电极表面附近的 H2 浓度超过了生成与电极尺寸相当的纳米气泡所需的饱和浓度。由于内拉普拉斯压力高,纳米气泡迅速溶解,而 Pt 部分暴露表面上的 H2 电生成则精确平衡,从而导致纳米气泡动态稳定。在纳米气泡形成过程中进行的 i-t 响应初步测量表明,成核和生长机制具有 100μs(或更短)和1ms 的时间尺度的两个步骤。