Holt C, Carver J A, Ecroyd H, Thorn D C
Institute of Molecular, Cell and Systems Biology, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
J Dairy Sci. 2013 Oct;96(10):6127-46. doi: 10.3168/jds.2013-6831. Epub 2013 Aug 16.
A typical casein micelle contains thousands of casein molecules, most of which form thermodynamically stable complexes with nanoclusters of amorphous calcium phosphate. Like many other unfolded proteins, caseins have an actual or potential tendency to assemble into toxic amyloid fibrils, particularly at the high concentrations found in milk. Fibrils do not form in milk because an alternative aggregation pathway is followed that results in formation of the casein micelle. As a result of forming micelles, nutritious milk can be secreted and stored without causing either pathological calcification or amyloidosis of the mother's mammary tissue. The ability to sequester nanoclusters of amorphous calcium phosphate in a stable complex is not unique to caseins. It has been demonstrated using a number of noncasein secreted phosphoproteins and may be of general physiological importance in preventing calcification of other biofluids and soft tissues. Thus, competent noncasein phosphoproteins have similar patterns of phosphorylation and the same type of flexible, unfolded conformation as caseins. The ability to suppress amyloid fibril formation by forming an alternative amorphous aggregate is also not unique to caseins and underlies the action of molecular chaperones such as the small heat-shock proteins. The open structure of the protein matrix of casein micelles is fragile and easily perturbed by changes in its environment. Perturbations can cause the polypeptide chains to segregate into regions of greater and lesser density. As a result, the reliable determination of the native structure of casein micelles continues to be extremely challenging. The biological functions of caseins, such as their chaperone activity, are determined by their composition and flexible conformation and by how the casein polypeptide chains interact with each other. These same properties determine how caseins behave in the manufacture of many dairy products and how they can be used as functional ingredients in other foods.
一个典型的酪蛋白胶粒包含数千个酪蛋白分子,其中大多数与无定形磷酸钙纳米簇形成热力学稳定的复合物。与许多其他未折叠蛋白一样,酪蛋白具有实际的或潜在的组装成有毒淀粉样纤维的倾向,尤其是在牛奶中发现的高浓度下。纤维在牛奶中不会形成,因为遵循了另一种聚集途径,导致酪蛋白胶粒的形成。由于形成了胶粒,营养丰富的牛奶可以被分泌和储存,而不会导致母体乳腺组织的病理性钙化或淀粉样变性。将无定形磷酸钙纳米簇隔离在稳定复合物中的能力并非酪蛋白所独有。已经使用多种非酪蛋白分泌磷蛋白证明了这一点,并且在防止其他生物流体和软组织钙化方面可能具有普遍的生理重要性。因此,有活性的非酪蛋白磷蛋白具有与酪蛋白相似的磷酸化模式和相同类型的灵活、未折叠构象。通过形成替代的无定形聚集体来抑制淀粉样纤维形成的能力也并非酪蛋白所独有,并且是小分子热休克蛋白等分子伴侣作用的基础。酪蛋白胶粒蛋白质基质的开放结构很脆弱,很容易受到其环境变化的干扰。干扰会导致多肽链分离成密度较大和较小的区域。因此,可靠地确定酪蛋白胶粒的天然结构仍然极具挑战性。酪蛋白的生物学功能,如它们的伴侣活性,取决于它们的组成和灵活构象,以及酪蛋白多肽链彼此之间的相互作用方式。这些相同的特性决定了酪蛋白在许多乳制品生产中的行为方式,以及它们如何用作其他食品中的功能成分。