一种基于生物材料的胰蛋白酶传感方法:明胶-酪蛋白膜的设计与优化

A Biomaterial-Based Approach to Trypsin Sensing: Design and Optimization of Gelatin-Casein Films.

作者信息

Ogbonna Chinaza, Kwon Youngjin, Kim Ka Ram, Yeo Woon-Hong, Ghalichechian Nima, Beardslee Luke

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

ACS Omega. 2025 Aug 12;10(33):37597-37610. doi: 10.1021/acsomega.5c03938. eCollection 2025 Aug 26.

Abstract

Real-time postoperative monitoring systems have tremendous potential to detect postoperative complications faster before patients become systemically ill. This study investigates the potential of gelatin-casein blend films as a biodegradable, implantable biomaterial platform for trypsin detection, which is a potential biomarker for an anastomotic leak from the duodenum or proximal jejunum. Although implantability has not been verified in this case, the implantability of gelatin and casein-based biomaterials is substantiated by their demonstrated cytocompatibility as evidenced below and established utility in medical applications, as evidenced by recent advancements in biomaterials research. We systematically evaluated nine gelatin-casein blends, ranging from 0:100 to 100:0 ratios to optimize their enzymatic degradability and response, establishing a material platform for future biosensing applications. Optimal refers to the sensor's ability to rapidly detect physiological concentrations of trypsin in the body while generating the maximum detectable response. Characterization of the films was performed using Fourier-Transform Infrared Spectroscopy (FTIR), UV-visible Spectroscopy (UV-vis), and Quartz Crystal Microbalance (QCM). The films' responses to trypsin were analyzed through limit of detection, initial reaction rates, and absorbance shifts. For statistical analysis, a flexible exponential decay model, was employed to assess the significance of the results. Our findings reveal that the 75:25 casein:gelatin blend exhibits superior performance, with the lowest limit of detection (7.81 × 10 M), highest initial reaction rate (6.936 ΔHz/s by QCM, -0.095 AU/min by UV-vis), and most significant absorbance shift (-2.208 AU after 10 min). This optimal blend demonstrates a 10-fold improvement in detection limit compared to pure gelatin films and a 5-fold enhancement over pure casein films. The remarkable sensitivity, rapid response, and significant signal change of the 75:25 casein:gelatin blend make it a promising candidate biomaterial platform for an implantable trypsin sensor.

摘要

实时术后监测系统在患者出现全身疾病之前更快地检测术后并发症方面具有巨大潜力。本研究调查了明胶 - 酪蛋白共混膜作为一种可生物降解的、可植入的生物材料平台用于检测胰蛋白酶的潜力,胰蛋白酶是十二指肠或空肠近端吻合口漏的潜在生物标志物。尽管在这种情况下可植入性尚未得到验证,但明胶和酪蛋白基生物材料的可植入性通过其已证明的细胞相容性得到证实(如下所示),并且在医学应用中的既定用途也得到了生物材料研究最新进展的证明。我们系统地评估了九种明胶 - 酪蛋白共混物,比例范围从0:100到100:0,以优化它们的酶促降解性和响应,从而建立一个用于未来生物传感应用的材料平台。最佳是指传感器能够在体内快速检测胰蛋白酶的生理浓度,同时产生最大可检测响应。使用傅里叶变换红外光谱(FTIR)、紫外可见光谱(UV-vis)和石英晶体微天平(QCM)对薄膜进行表征。通过检测限、初始反应速率和吸光度变化来分析薄膜对胰蛋白酶的响应。为了进行统计分析,采用了灵活的指数衰减模型来评估结果的显著性。我们的研究结果表明,75:25酪蛋白:明胶共混物表现出卓越的性能,具有最低的检测限(7.81×10 M)、最高的初始反应速率(通过QCM为6.936ΔHz/s,通过UV-vis为-0.095 AU/min)以及最显著的吸光度变化(10分钟后为-2.208 AU)。这种最佳共混物与纯明胶薄膜相比,检测限提高了10倍,与纯酪蛋白薄膜相比提高了5倍。75:25酪蛋白:明胶共混物的显著灵敏度、快速响应和显著的信号变化使其成为用于可植入胰蛋白酶传感器的有前途的候选生物材料平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc8/12391974/b4f67258603e/ao5c03938_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索