Department of Physics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
Phys Chem Chem Phys. 2013 Oct 14;15(38):16019-23. doi: 10.1039/c3cp52431k. Epub 2013 Aug 20.
Methods to decouple epitaxial graphene from metal substrates have been extensively studied, with anticipation of observing unperturbed Dirac cone properties, but its local electronic structures were rarely studied. Here, we investigated the local variations of Dirac cones recovered using oxygen intercalation applied to epitaxial graphene on Ru(0001) using scanning tunneling microscopy and spectroscopy (STM and STS). New V-shaped features, which appear in the STS data at the oxygen-intercalated graphene regions, are attributed to the signatures of recovered Dirac cones. The Dirac point energy was observed at 0.48 eV below the Fermi level, different from previous photoemission results because of different oxygen coverages. The observed spatial variations of Dirac point energy were explained by the weakly protruding network structures caused by a small net strain in graphene. Our study shows that oxygen-intercalated graphene provides an excellent platform for further graphene research at the nano-meter scale with unperturbed Dirac cones.
已经有许多方法被用来将外延石墨烯从金属衬底上解耦,以期观察到未受干扰的狄拉克锥特性,但对其局部电子结构的研究却很少。在这里,我们使用扫描隧道显微镜和光谱学(STM 和 STS)研究了 Ru(0001)上外延石墨烯使用氧插入法恢复的狄拉克锥的局部变化。在氧插入石墨烯区域的 STS 数据中出现的新 V 形特征归因于恢复的狄拉克锥的特征。狄拉克点能量出现在费米能级以下 0.48 eV,与之前的光电子发射结果不同,这是由于氧覆盖率不同所致。狄拉克点能量的观察到的空间变化可以通过石墨烯中由于存在小的净应变而导致的略微突出的网络结构来解释。我们的研究表明,氧插入石墨烯为在纳米尺度上进一步研究具有未受干扰的狄拉克锥的石墨烯提供了一个极好的平台。