Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Small. 2016 Aug;12(29):3956-66. doi: 10.1002/smll.201600666. Epub 2016 Jun 13.
The effects of Pb intercalation on the structural and electronic properties of epitaxial single-layer graphene grown on SiC(0001) substrate are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, Kelvin probe force microscopy (KPFM), X-ray photoelectron spectroscopy, and angle-resolved photoemission spectroscopy (ARPES) methods. The STM results show the formation of an ordered moiré superstructure pattern induced by Pb atom intercalation underneath the graphene layer. ARPES measurements reveal the presence of two additional linearly dispersing π-bands, providing evidence for the decoupling of the buffer layer from the underlying SiC substrate. Upon Pb intercalation, the Si 2p core level spectra show a signature for the existence of PbSi chemical bonds at the interface region, as manifested in a shift of 1.2 eV of the bulk SiC component toward lower binding energies. The Pb intercalation gives rise to hole-doping of graphene and results in a shift of the Dirac point energy by about 0.1 eV above the Fermi level, as revealed by the ARPES measurements. The KPFM experiments have shown that decoupling of the graphene layer by Pb intercalation is accompanied by a work function increase. The observed increase in the work function is attributed to the suppression of the electron transfer from the SiC substrate to the graphene layer. The Pb intercalated structure is found to be stable in ambient conditions and at high temperatures up to 1250 °C. These results demonstrate that the construction of a graphene-capped Pb/SiC system offers a possibility of tuning the graphene electronic properties and exploring intriguing physical properties such as superconductivity and spintronics.
采用扫描隧道显微镜(STM)、非接触原子力显微镜、开尔文探针力显微镜(KPFM)、X 射线光电子能谱和角分辨光电子能谱(ARPES)等方法研究了 Pb 嵌入对 SiC(0001)衬底上外延单层石墨烯的结构和电子性质的影响。STM 结果表明,在石墨烯层下形成了由 Pb 原子嵌入引起的有序莫尔超结构图案。ARPES 测量结果表明存在两个额外的线性色散 π 带,这为缓冲层与 SiC 衬底的解耦提供了证据。Pb 嵌入后,Si 2p 芯能级谱显示界面区域存在 PbSi 化学键的特征,这表现为块状 SiC 成分向较低结合能方向移动 1.2 eV。Pb 嵌入导致石墨烯的空穴掺杂,并导致狄拉克点能量向费米能级上方约 0.1 eV 移动,这可以通过 ARPES 测量揭示。KPFM 实验表明,Pb 嵌入导致石墨烯层解耦伴随着功函数的增加。观察到的功函数增加归因于抑制了从 SiC 衬底到石墨烯层的电子转移。Pb 嵌入结构在环境条件下和高达 1250°C 的高温下都是稳定的。这些结果表明,构建石墨烯覆盖的 Pb/SiC 系统为调节石墨烯电子性质和探索超导和自旋电子学等有趣的物理性质提供了可能性。