Department of Biology, University of Eastern Finland, P.O. Box 111, FIN-80101 Joensuu, Finland.
Sci Total Environ. 2014 Jan 1;466-467:690-8. doi: 10.1016/j.scitotenv.2013.07.033. Epub 2013 Aug 19.
Understanding the fate of persistent organic chemicals in the environment is fundamental information for the successful protection of ecosystems and humans. A common dilemma in risk assessment is that monitoring data reveals contaminant concentrations in wildlife, while the source concentrations, route of uptake and acceptable source concentrations remain unsolved. To overcome this problem, different models have been developed in order to obtain more precise risk estimates for the food webs. However, there is still an urgent need for studies combining modelled and measured data in order to verify the functionality of the models. Studies utilising field-collected data covering entire food webs are particularly scarce. This study aims to contribute to tackling this problem by determining the validity of two bioaccumulation models, BIOv1.22 and AQUAWEBv1.2, for application to a multispecies aquatic food web. A small boreal lake, Lake Kernaalanjärvi, in Finland was investigated for its food web structure and concentrations of PCBs in all trophic levels. Trophic magnification factors (TMFs) were used to measure the bioaccumulation potential of PCBs, and the site-specific environmental parameters were used to compare predicted and observed concentrations. Site-specific concentrations in sediment pore water did not affect the modelling endpoints, but accurate site-specific measurements of freely dissolved concentrations in water turned out to be crucial for obtaining realistic model-predicted concentrations in biota. Numerous parameters and snapshot values affected the model performances, bringing uncertainty into the process and results, but overall, the models worked well for a small boreal lake ecosystem. We suggest that these models can be optimised for different ecosystems and can be useful tools for estimating the bioaccumulation and environmental fate of PCBs.
了解持久性有机污染物在环境中的归宿对于成功保护生态系统和人类至关重要。在风险评估中,一个常见的困境是监测数据显示野生动物中的污染物浓度,而源浓度、摄入途径和可接受的源浓度仍然未得到解决。为了克服这个问题,已经开发了不同的模型,以便为食物网获得更精确的风险估计。然而,仍然迫切需要将模型和实测数据结合起来的研究,以验证模型的功能。利用涵盖整个食物网的实地收集数据进行的研究特别稀缺。本研究旨在通过确定 BIOv1.22 和 AQUAWEBv1.2 这两种生物累积模型在应用于多物种水生食物网中的有效性,来解决这个问题。芬兰的一个小型北方湖泊,克纳拉安耶尔维湖(Lake Kernaalanjärvi),被调查了其食物网结构和所有营养级别的多氯联苯(PCBs)浓度。营养放大因子(TMFs)用于测量 PCBs 的生物累积潜力,并用特定地点的环境参数来比较预测和观察到的浓度。沉积物孔隙水中的特定地点浓度不会影响建模终点,但准确测量特定地点的自由溶解浓度对于获得生物体内实际的模型预测浓度至关重要。大量参数和瞬时值影响了模型性能,给过程和结果带来了不确定性,但总体而言,这些模型在一个小型北方湖泊生态系统中表现良好。我们建议可以针对不同的生态系统对这些模型进行优化,并且可以成为估计 PCBs 生物累积和环境归宿的有用工具。