Suppr超能文献

使用酒精使用障碍识别测试-快速筛查(AUDIT-PC)预测住院患者的酒精戒断情况。

Using the AUDIT-PC to predict alcohol withdrawal in hospitalized patients.

作者信息

Pecoraro Anna, Ewen Edward, Horton Terry, Mooney Ruth, Kolm Paul, McGraw Patty, Woody George

出版信息

J Gen Intern Med. 2014 Jan;29(1):34-40. doi: 10.1007/s11606-013-2551-9.

Abstract

BACKGROUND

Alcohol withdrawal syndrome (AWS) occurs when alcohol-dependent individuals abruptly reduce or stop drinking. Hospitalized alcohol-dependent patients are at risk. Hospitals need a validated screening tool to assess withdrawal risk, but no validated tools are currently available.

OBJECTIVE

To examine the admission Alcohol Use Disorders Identification Test-(Piccinelli) Consumption (AUDIT-PC) ability to predict the subsequent development of AWS among hospitalized medical-surgical patients admitted to a non-intensive care setting.

DESIGN

Retrospective case–control study of patients discharged from the hospital with a diagnosis of AWS. All patients with AWS were classified as presenting with AWS or developing AWS later during admission. Patients admitted to an intensive care setting and those missing AUDIT-PC scores were excluded from analysis. A hierarchical (by hospital unit) logistic regression was performed and receiver-operating characteristics were examined on those developing AWS after admission and randomly selected controls. Because those diagnosing AWS were not blinded to the AUDIT-PC scores, a sensitivity analysis was performed.

PARTICIPANTS

The study cohort included all patients age ≥18 years admitted to any medical or surgical units in a single health care system from 6 October 2009 to 7 October 2010.

KEY RESULTS

After exclusions, 414 patients were identified with AWS. The 223 (53.9 %) who developed AWS after admission were compared to 466 randomly selected controls without AWS. An AUDIT-PC score ≥4 at admission provides 91.0 % sensitivity and 89.7 % specificity (AUC=0.95; 95 % CI, 0.94–0.97) for AWS, and maximizes the correct classification while resulting in 17 false positives for every true positive identified. Performance remained excellent on sensitivity analysis (AUC=0.92; 95 % CI, 0.90–0.93). Increasing AUDIT-PC scores were associated with an increased risk of AWS (OR=1.68, 95 % CI 1.55–1.82, p<0.001).

CONCLUSIONS

The admission AUDIT-PC score is an excellent discriminator of AWS and could be an important component of future clinical prediction rules. Calibration and further validation on a large prospectivecohort is indicated.

摘要

背景

酒精戒断综合征(AWS)发生于酒精依赖个体突然减少饮酒量或停止饮酒时。住院的酒精依赖患者面临此风险。医院需要一种经过验证的筛查工具来评估戒断风险,但目前尚无经过验证的工具。

目的

研究入院时酒精使用障碍识别测试-(皮奇内利)饮酒量(AUDIT-PC)预测非重症监护病房住院的内科-外科患者随后发生AWS的能力。

设计

对诊断为AWS出院的患者进行回顾性病例对照研究。所有AWS患者被分类为入院时即出现AWS或入院后期出现AWS。入住重症监护病房的患者以及缺少AUDIT-PC评分的患者被排除在分析之外。进行分层(按医院科室)逻辑回归分析,并对入院后发生AWS的患者和随机选择的对照组进行受试者工作特征分析。由于诊断AWS的人员知晓AUDIT-PC评分,因此进行了敏感性分析。

参与者

研究队列包括2009年10月6日至2010年10月7日在单一医疗保健系统中入住任何内科或外科科室的所有年龄≥18岁的患者。

主要结果

排除后,确定414例AWS患者。将入院后发生AWS的223例(53.9%)患者与466例随机选择的无AWS对照组进行比较。入院时AUDIT-PC评分≥4对AWS的敏感性为91.0%,特异性为89.7%(AUC=0.95;95%CI,0.94-0.97),在使正确分类最大化的同时,每识别出1例真阳性会产生17例假阳性。敏感性分析结果仍然出色(AUC=0.92;95%CI,0.90-0.93)。AUDIT-PC评分升高与AWS风险增加相关(OR=1.68,95%CI 1.55-1.82,p<0.001)。

结论

入院时AUDIT-PC评分是AWS的优秀鉴别指标,可能是未来临床预测规则的重要组成部分。需要在大型前瞻性队列中进行校准和进一步验证。

相似文献

引用本文的文献

本文引用的文献

3
Alcohol withdrawal and prolonged hospital stay in a patient with neuroimaging abnormalities: a case report.
Alcohol Alcohol. 2009 Mar-Apr;44(2):183-4. doi: 10.1093/alcalc/agn111. Epub 2009 Jan 9.
5
Effectiveness of brief alcohol interventions in primary care populations.简短酒精干预对基层医疗人群的有效性。
Cochrane Database Syst Rev. 2007 Apr 18(2):CD004148. doi: 10.1002/14651858.CD004148.pub3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验