Suppr超能文献

从一个古菌直系同源物的结构探讨真核生物氨基端乙酰转移酶(NAT)酶进化的意义。

Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.

机构信息

Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA 19104, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14652-7. doi: 10.1073/pnas.1310365110. Epub 2013 Aug 19.

Abstract

Amino-terminal acetylation is a ubiquitous modification in eukaryotes that is involved in a growing number of biological processes. There are six known eukaryotic amino-terminal acetyltransferases (NATs), which are differentiated from one another on the basis of substrate specificity. To date, two eukaryotic NATs, NatA and NatE, have been structurally characterized, of which NatA will acetylate the α-amino group of a number of nonmethionine amino-terminal residue substrates such as serine; NatE requires a substrate amino-terminal methionine residue for activity. Interestingly, these two NATs use different catalytic strategies to accomplish substrate-specific acetylation. In archaea, where this modification is less prevalent, only one NAT enzyme has been identified. Surprisingly, this enzyme is able to acetylate NatA and NatE substrates and is believed to represent an ancestral NAT variant from which the eukaryotic NAT machinery evolved. To gain insight into the evolution of NAT enzymes, we determined the X-ray crystal structure of an archaeal NAT from Sulfolobus solfataricus (ssNAT). Through the use of mutagenesis and kinetic analysis, we show that the active site of ssNAT represents a hybrid of the NatA and NatE active sites, and we highlight features of this protein that allow it to facilitate catalysis of distinct substrates through different catalytic strategies, which is a unique characteristic of this enzyme. Taken together, the structural and biochemical data presented here have implications for the evolution of eukaryotic NAT enzymes and the substrate specificities therein.

摘要

氨基末端乙酰化是真核生物中普遍存在的一种修饰,涉及越来越多的生物学过程。有六种已知的真核生物氨基末端乙酰转移酶(NATs),它们在底物特异性的基础上彼此区分。迄今为止,已经对两种真核生物 NATs(NatA 和 NatE)进行了结构表征,其中 NatA 可乙酰化许多非甲硫氨酸氨基末端残基底物的α-氨基基团,如丝氨酸;NatE 活性需要底物氨基末端甲硫氨酸残基。有趣的是,这两种 NAT 采用不同的催化策略来完成底物特异性乙酰化。在修饰程度较低的古菌中,只鉴定出一种 NAT 酶。令人惊讶的是,这种酶能够乙酰化 NatA 和 NatE 底物,并且被认为代表了真核 NAT 机制进化的祖先 NAT 变体。为了深入了解 NAT 酶的进化,我们确定了来自 Sulfolobus solfataricus 的古菌 NAT 的 X 射线晶体结构(ssNAT)。通过使用诱变和动力学分析,我们表明 ssNAT 的活性位点代表了 NatA 和 NatE 活性位点的混合体,并且我们强调了该蛋白质的特征,该特征使其能够通过不同的催化策略促进不同底物的催化,这是该酶的独特特征。总之,这里提出的结构和生化数据对真核生物 NAT 酶的进化及其内在的底物特异性具有重要意义。

相似文献

引用本文的文献

9
Molecular mechanism of N-terminal acetylation by the ternary NatC complex.三元复合物 NatC 介导的 N 端乙酰化的分子机制。
Structure. 2021 Oct 7;29(10):1094-1104.e4. doi: 10.1016/j.str.2021.05.003. Epub 2021 May 20.

本文引用的文献

6
N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum.N-端乙酰化抑制蛋白质靶向内质网。
PLoS Biol. 2011 May;9(5):e1001073. doi: 10.1371/journal.pbio.1001073. Epub 2011 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验