Van Damme Petra, Støve Svein I, Glomnes Nina, Gevaert Kris, Arnesen Thomas
From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium;
¶Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; **Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
Mol Cell Proteomics. 2014 Aug;13(8):2031-41. doi: 10.1074/mcp.M113.035402. Epub 2014 Jan 9.
N-terminal acetylation (Nt-acetylation) occurs on the majority of eukaryotic proteins and is catalyzed by N-terminal acetyltransferases (NATs). Nt-acetylation is increasingly recognized as a vital modification with functional implications ranging from protein degradation to protein localization. Although early genetic studies in yeast demonstrated that NAT-deletion strains displayed a variety of phenotypes, only recently, the first human genetic disorder caused by a mutation in a NAT gene was reported; boys diagnosed with the X-linked Ogden syndrome harbor a p.Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of the NatA complex, and suffer from global developmental delays and lethality during infancy. Here, we describe a Saccharomyces cerevisiae model developed by introducing the human wild-type or mutant NatA complex into yeast lacking NatA (NatA-Δ). The wild-type human NatA complex phenotypically complemented the NatA-Δ strain, whereas only a partial rescue was observed for the Ogden mutant NatA complex suggesting that hNaa10 S37P is only partially functional in vivo. Immunoprecipitation experiments revealed a reduced subunit complexation for the mutant hNatA S37P next to a reduced in vitro catalytic activity. We performed quantitative Nt-acetylome analyses on a control yeast strain (yNatA), a yeast NatA deletion strain (yNatA-Δ), a yeast NatA deletion strain expressing wild-type human NatA (hNatA), and a yeast NatA deletion strain expressing mutant human NatA (hNatA S37P). Interestingly, a generally reduced degree of Nt-acetylation was observed among a large group of NatA substrates in the yeast expressing mutant hNatA as compared with yeast expressing wild-type hNatA. Combined, these data provide strong support for the functional impairment of hNaa10 S37P in vivo and suggest that reduced Nt-acetylation of one or more target substrates contributes to the pathogenesis of the Ogden syndrome. Comparative analysis between human and yeast NatA also provided new insights into the co-evolution of the NatA complexes and their substrates. For instance, (Met-)Ala- N termini are more prevalent in the human proteome as compared with the yeast proteome, and hNatA displays a preference toward these N termini as compared with yNatA.
N 端乙酰化(Nt-acetylation)发生在大多数真核生物蛋白质上,由 N 端乙酰转移酶(NATs)催化。Nt-乙酰化越来越被认为是一种重要的修饰,其功能影响范围从蛋白质降解到蛋白质定位。尽管早期在酵母中的遗传学研究表明,NAT 缺失菌株表现出多种表型,但直到最近,才报道了首例由 NAT 基因突变引起的人类遗传疾病;被诊断患有 X 连锁奥格登综合征的男孩在编码 Naa10(NatA 复合物的催化亚基)的基因中存在 p.Ser37Pro(S37P)突变,并在婴儿期出现全面发育迟缓及致死情况。在此,我们描述了一种酿酒酵母模型,该模型通过将人类野生型或突变型 NatA 复合物导入缺乏 NatA 的酵母(NatA-Δ)中构建而成。野生型人类 NatA 复合物在表型上互补了 NatA-Δ菌株,而对于奥格登突变型 NatA 复合物仅观察到部分拯救,这表明 hNaa10 S37P 在体内仅部分具有功能。免疫沉淀实验显示,与体外催化活性降低相伴的是,突变型 hNatA S37P 的亚基复合作用减少。我们对对照酵母菌株(yNatA)、酵母 NatA 缺失菌株(yNatA-Δ)、表达野生型人类 NatA 的酵母 NatA 缺失菌株(hNatA)以及表达突变型人类 NatA 的酵母 NatA 缺失菌株(hNatA S37P)进行了定量 Nt-乙酰化组分析。有趣的是,与表达野生型 hNatA 的酵母相比,在表达突变型 hNatA 的酵母中,一大组 NatA 底物的 Nt-乙酰化程度普遍降低。综合来看,这些数据为 hNaa10 S37P 在体内的功能受损提供了有力支持,并表明一种或多种靶底物的 Nt-乙酰化减少促成了奥格登综合征的发病机制。人类和酵母 NatA 之间的比较分析也为 NatA 复合物及其底物的共同进化提供了新的见解。例如,与酵母蛋白质组相比,(甲硫氨酸-)丙氨酸-N 端在人类蛋白质组中更为普遍,并且与 yNatA 相比,hNatA 对这些 N 端表现出偏好。