Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3372-80. doi: 10.1073/pnas.1303966110. Epub 2013 Aug 19.
The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.
信号酶的调节和定位通常通过辅助模块域介导,这些模块域通常串联发挥作用。这些串联体采用多种构象的能力对于正确的调节与单个结构域特异性一样重要。Abl 是一个普遍存在的酪氨酸激酶,具有重要的药理学意义,是一个典范的例子。SH3 和 SH2 结构域通过组装到催化结构域上来抑制 Abl,变构地将其夹在非活性状态。我们使用微秒全原子模拟和差示扫描量热法研究了这种 SH3-SH2 串联体的动力学。我们的结果表明,Abl 串联体是一个二态开关,在自动抑制酶结构中观察到的构象和另一种与现有散射数据一致的激活形式之间交替。有趣的是,当串联体与催化结构域分离时,我们发现后者是最可能的。然而,在 SH3 结构域之前的一段氨基酸序列,即所谓的 N-帽,重塑了串联体的自由能景观,并有利于该结构域与 SH2-激酶接头的相互作用,这是组装自动抑制复合物的中间步骤。这种变构效应源于 N-帽与 SH2 结构域和 SH3-SH2 连接器之间的相互作用,其中涉及一个磷酸化位点。我们还表明,SH3-SH2 连接器在 Abl 的组装平衡中起着决定性的作用,因为其突变会阻碍 SH2-激酶接头的结合。这些结果为 N-帽和 SH3-SH2 连接器在 Abl 调节中的参与提供了热力学依据,并扩展了我们对模块化结构域组织原理的理解。