Suppr超能文献

笼内纳洛酮揭示阿片类信号失活动力学。

Caged naloxone reveals opioid signaling deactivation kinetics.

机构信息

Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (M.R.B., R.C.S., B.L.S.); Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.); and Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia (L.D.L.).

出版信息

Mol Pharmacol. 2013 Nov;84(5):687-95. doi: 10.1124/mol.113.088096. Epub 2013 Aug 19.

Abstract

The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis.

摘要

阿片信号在大脑中的时空动态仍未得到明确界定。光可激活的阿片配体为定量测量这些动态及其在脑组织中的潜在机制提供了一种手段。尽管可以使用笼状激动剂评估激活动力学,但由于组织中激动剂的清除缓慢,失活动力学会被掩盖。为了揭示阿片信号的失活动力学,我们开发了一种光可释放的竞争性拮抗剂,它可以快速地以足够高的浓度被光释放,从而使激动剂解离几乎不可逆。Carboxynitroveratryl-naloxone(CNV-NLX)是竞争性阿片拮抗剂 NLX 的光笼型类似物,可从商业上可获得的 NLX 以良好的产率轻易合成,并且在异源表达的阿片受体上没有表现出拮抗剂活性。在大鼠蓝斑核切片中的光解产生了对μ阿片受体(MOR)的多种激动剂诱发的离子电流的快速抑制,但对激活相同离子通道库的α肾上腺素受体没有抑制作用。使用高亲和力肽激动剂 dermorphin,我们确定了光驱动失活率与激动剂浓度无关且因此与激动剂-受体复合物固有相关的条件。在这些条件下,一些 MOR 激动剂的失活率受到 G 蛋白信号的限制,而其他激动剂的失活率似乎受到激动剂解离的限制。因此,激动剂的选择决定了 CNV-NLX 光解暴露的受体信号的哪个特征。

相似文献

1
Caged naloxone reveals opioid signaling deactivation kinetics.笼内纳洛酮揭示阿片类信号失活动力学。
Mol Pharmacol. 2013 Nov;84(5):687-95. doi: 10.1124/mol.113.088096. Epub 2013 Aug 19.

引用本文的文献

2
Molecular basis of opioid receptor signaling.阿片受体信号转导的分子基础。
Cell. 2023 Nov 22;186(24):5203-5219. doi: 10.1016/j.cell.2023.10.029.
3
In vivo photopharmacology with light-activated opioid drugs.体内光药理学与光激活阿片类药物。
Neuron. 2023 Dec 20;111(24):3926-3940.e10. doi: 10.1016/j.neuron.2023.09.017. Epub 2023 Oct 16.
5
Chemical tools for the opioids.阿片类药物的化学工具。
Mol Cell Neurosci. 2023 Jun;125:103845. doi: 10.1016/j.mcn.2023.103845. Epub 2023 Mar 21.
6
Emerging approaches for decoding neuropeptide transmission.新兴的神经肽传递解码方法。
Trends Neurosci. 2022 Dec;45(12):899-912. doi: 10.1016/j.tins.2022.09.005. Epub 2022 Oct 15.
8
The emergence of molecular systems neuroscience.分子系统神经科学的出现。
Mol Brain. 2022 Jan 4;15(1):7. doi: 10.1186/s13041-021-00885-5.

本文引用的文献

6
Constitutively active μ-opioid receptors.组成型激活的μ-阿片受体
Methods Enzymol. 2010;484:445-69. doi: 10.1016/B978-0-12-381298-8.00022-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验