Suppr超能文献

原核生物的染色体周期。

The chromosome cycle of prokaryotes.

机构信息

Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Mol Microbiol. 2013 Oct;90(2):214-27. doi: 10.1111/mmi.12372. Epub 2013 Sep 8.

Abstract

In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the 'chromosome cycle'. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice 'progressive' chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are 'segregation forks' in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the 'nucleoid administration' system that organizes the dynamic part of the prokaryotic chromosome cycle.

摘要

在真核生物和原核生物中,染色体 DNA 按顺序经历复制、浓缩-去浓缩和分离,按某些固定的顺序进行。其他条件,如姐妹染色单体粘连(SCC),可能跨越几个染色体事件。在单个细胞周期内的这些染色体事件的一组构成了“染色体周期”。多年来,人们普遍认为原核染色体周期遵循真核染色体周期的主要阶段:复制-浓缩-分离-(细胞分裂)-去浓缩-,其中 SCC 的长度未指定。最终,很明显,与真核生物严格连续的染色体周期相反,原核染色体周期的所有阶段都是同时进行的。因此,原核生物通过短暂的 SCC 将染色体分离与复制分开,实行“渐进式”染色体分离,并且所有三个交易都以相同的快速速度沿着染色体移动。换句话说,除了复制叉之外,原核染色体中还有“分离叉”。此外,复制-分离转换之外的大部分原核 DNA 保持紧凑。我考虑了这种同时发生的复制-分离的可能起源,并概述了组织原核染色体周期动态部分的“拟核管理”系统。

相似文献

1
The chromosome cycle of prokaryotes.
Mol Microbiol. 2013 Oct;90(2):214-27. doi: 10.1111/mmi.12372. Epub 2013 Sep 8.
2
The precarious prokaryotic chromosome.
J Bacteriol. 2014 May;196(10):1793-806. doi: 10.1128/JB.00022-14. Epub 2014 Mar 14.
3
Bacterial chromosome dynamics.
Science. 2003 Aug 8;301(5634):780-5. doi: 10.1126/science.1084780.
4
Partitioning of the Escherichia coli chromosome: superhelicity and condensation.
Biochimie. 2001 Jan;83(1):41-8. doi: 10.1016/s0300-9084(00)01204-9.
7
Structural maintenance of chromosome complex in bacteria.
J Mol Microbiol Biotechnol. 2014;24(5-6):384-95. doi: 10.1159/000368931. Epub 2015 Feb 17.
8
Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes.
Mol Microbiol. 2005 Jun;56(5):1129-38. doi: 10.1111/j.1365-2958.2005.04622.x.
9
Chromosome replication and segregation in bacteria.
Annu Rev Genet. 2012;46:121-43. doi: 10.1146/annurev-genet-110711-155421. Epub 2012 Aug 28.
10
Concurrent processes set cell division.
Sci Adv. 2018 Nov 7;4(11):eaau3324. doi: 10.1126/sciadv.aau3324. eCollection 2018 Nov.

引用本文的文献

1
Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma.
J Bacteriol. 2024 Mar 21;206(3):e0021123. doi: 10.1128/jb.00211-23. Epub 2024 Feb 15.
2
Creating Polyploid Escherichia Coli and Its Application in Efficient L-Threonine Production.
Adv Sci (Weinh). 2023 Nov;10(31):e2302417. doi: 10.1002/advs.202302417. Epub 2023 Sep 25.
3
Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium.
Nat Commun. 2019 Jul 23;10(1):3290. doi: 10.1038/s41467-019-11242-5.
4
Archaeal imaging: leading the hunt for new discoveries.
Mol Biol Cell. 2018 Jul 15;29(13):1675-1681. doi: 10.1091/mbc.E17-10-0603.
6
Genome sequences of two closely related strains of Escherichia coli K-12 GM4792.
Stand Genomic Sci. 2015 Dec 10;10:125. doi: 10.1186/s40793-015-0114-x. eCollection 2015.
8
Dynamic Escherichia coli SeqA complexes organize the newly replicated DNA at a considerable distance from the replisome.
Nucleic Acids Res. 2015 Mar 11;43(5):2730-43. doi: 10.1093/nar/gkv146. Epub 2015 Feb 26.
9
End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria.
PLoS Genet. 2015 Jan 8;11(1):e1004909. doi: 10.1371/journal.pgen.1004909. eCollection 2015 Jan.
10
Replication fork inhibition in seqA mutants of Escherichia coli triggers replication fork breakage.
Mol Microbiol. 2014 Jul;93(1):50-64. doi: 10.1111/mmi.12638. Epub 2014 May 23.

本文引用的文献

1
Chromosomal organization and segregation in Pseudomonas aeruginosa.
PLoS Genet. 2013 May;9(5):e1003492. doi: 10.1371/journal.pgen.1003492. Epub 2013 May 2.
2
Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells.
Cell. 2013 May 9;153(4):882-95. doi: 10.1016/j.cell.2013.04.006. Epub 2013 Apr 25.
3
Genome architecture: domain organization of interphase chromosomes.
Cell. 2013 Mar 14;152(6):1270-84. doi: 10.1016/j.cell.2013.02.001.
4
Regulating DNA replication in bacteria.
Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a012922. doi: 10.1101/cshperspect.a012922.
5
Organization and segregation of bacterial chromosomes.
Nat Rev Genet. 2013 Mar;14(3):191-203. doi: 10.1038/nrg3375. Epub 2013 Feb 12.
6
Discovering non-random segregation of sister chromatids: the naïve treatment of a premature discovery.
Front Oncol. 2013 Feb 1;2:211. doi: 10.3389/fonc.2012.00211. eCollection 2012.
7
Physical manipulation of the Escherichia coli chromosome reveals its soft nature.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):E2649-56. doi: 10.1073/pnas.1208689109. Epub 2012 Sep 14.
8
Sister chromatid interactions in bacteria revealed by a site-specific recombination assay.
EMBO J. 2012 Aug 15;31(16):3468-79. doi: 10.1038/emboj.2012.194. Epub 2012 Jul 20.
9
Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere?
Mol Microbiol. 2012 Aug;85(3):393-404. doi: 10.1111/j.1365-2958.2012.08107.x. Epub 2012 Jun 11.
10
Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells.
Mol Microbiol. 2012 Jul;85(1):21-38. doi: 10.1111/j.1365-2958.2012.08081.x. Epub 2012 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验